Javascript must be enabled to continue!
Axiomatization of modal logic with counting
View through CrossRef
Abstract
Modal logic with counting is obtained from basic modal logic by adding cardinality comparison formulas of the form $ \#\varphi \succsim \#\psi $, stating that the cardinality of successors satisfying $ \varphi $ is larger than or equal to the cardinality of successors satisfying $ \psi $. It is different from graded modal logic where basic modal logic is extended with formulas of the form $ \Diamond _{k}\varphi $ stating that there are at least $ k$-many different successors satisfying $ \varphi $. In this paper, we investigate the axiomatization of ML(#) with respect to different frame classes, such as image-finite frames and arbitrary frames. Drawing inspiration from existing works, we employ a similar proof strategy that uses the characterization of binary relations on finite Boolean algebras capable of representing generalized probability measures or finite (respectively arbitrary) cardinality measures. Our main result shows that any formula not provable in the Hilbert system can be refuted within a finite (respectively arbitrary) cardinality measure Kripke frame with a finite domain. We then transform this finite (respectively arbitrary) cardinality measure Kripke frame into a Kripke frame in the corresponding class, refuting the unprovable formula.
Title: Axiomatization of modal logic with counting
Description:
Abstract
Modal logic with counting is obtained from basic modal logic by adding cardinality comparison formulas of the form $ \#\varphi \succsim \#\psi $, stating that the cardinality of successors satisfying $ \varphi $ is larger than or equal to the cardinality of successors satisfying $ \psi $.
It is different from graded modal logic where basic modal logic is extended with formulas of the form $ \Diamond _{k}\varphi $ stating that there are at least $ k$-many different successors satisfying $ \varphi $.
In this paper, we investigate the axiomatization of ML(#) with respect to different frame classes, such as image-finite frames and arbitrary frames.
Drawing inspiration from existing works, we employ a similar proof strategy that uses the characterization of binary relations on finite Boolean algebras capable of representing generalized probability measures or finite (respectively arbitrary) cardinality measures.
Our main result shows that any formula not provable in the Hilbert system can be refuted within a finite (respectively arbitrary) cardinality measure Kripke frame with a finite domain.
We then transform this finite (respectively arbitrary) cardinality measure Kripke frame into a Kripke frame in the corresponding class, refuting the unprovable formula.
Related Results
Provability logic
Provability logic
Central to Gödel’s second incompleteness theorem is his discovery that, in a sense, a formal system can talk about itself. Provability logic is a branch of modal logic specifically...
Increasing familiarity with the heartbeat counting task does not affect performance
Increasing familiarity with the heartbeat counting task does not affect performance
Background: Interoception is typically defined as the processing and perception of internal signals. A common evaluation of interoceptive abilities is via the perception of heartbe...
Modal Sosial Masyarakat Dusun Melayang dalam Pemanfaatan Buah Tengkawang di Hutan Adat Pikul
Modal Sosial Masyarakat Dusun Melayang dalam Pemanfaatan Buah Tengkawang di Hutan Adat Pikul
AbstrakModal sosial adalah kemampuan masyarakat untuk bekerjasama demi mencapai suatu tujuan bersama didalam suatu kelompok. Hutan Adat Pikul memiliki potensi tengkawang yang sanga...
Weak Belnapian modal logic
Weak Belnapian modal logic
Abstract
In this paper, a new modal logic extending the first-degree entailment (FDE) system is introduced. This system, called weak Belnapian modal logic (WBK), is ...
Peran Pemerintah Dalam Mitigasi Kejahatan Pasar Modal
Peran Pemerintah Dalam Mitigasi Kejahatan Pasar Modal
AbstrakSaat ini perkembangan ekonomi berjalan sangat pesat namun, ditengah pesatnya pertumbuhan ekonomi terdapat juga ketidakstabilan ekonomi yang kemudian memberikan peluang kepad...
MODAL SOSIAL KANDIDAT DALAM KONSTETASI PEMILIHAN KEPALA DESA LOHIA KECAMATAN LOHIA KABUPATEN MUNA
MODAL SOSIAL KANDIDAT DALAM KONSTETASI PEMILIHAN KEPALA DESA LOHIA KECAMATAN LOHIA KABUPATEN MUNA
Tujuan penelitian ini adalah Untuk mengetahui mengetahui bagaimana Modal Sosial Kandidat Dalam Konstetasi Pemilihan Kepala Desa Lohia Kecamatan Lohia Kabupaten Muna..Metode peneli...
Eksplorasi Motivasi Minat Mahasiswa Akuntansi Berinvestasi Di Pasar Modal
Eksplorasi Motivasi Minat Mahasiswa Akuntansi Berinvestasi Di Pasar Modal
Penelitian ini bertujuan untuk mengetahui pengaruh sosialisasi pasar modal, pengetahuan pasar modal, dan motivasi belajar pasar modal terhadap minat mahasiswa akuntansi terhadap in...
Pasar Modal Syariah dan Konvensional
Pasar Modal Syariah dan Konvensional
Investasi adalah sesuatu yang harus dilakukan hari ini. Investasi sendiri pada dasarnya adalah pengumpulan uang atau apa yang dapat dibandingkan dengan apa yang merupakan simpaun y...

