Javascript must be enabled to continue!
Optical Helicity of Light in the Tight Focus
View through CrossRef
Using the Richards–Wolf formalism, we obtain explicit analytical expressions for the optical helicity density at the tight focus of four different light beams: a linearly polarized optical vortex, an optical vortex with right-handed circular polarization, superposition of a cylindrical vector beam and a linearly polarized beam, and a beam with hybrid circular-azimuthal polarization. We show that, in all four cases, the helicity density at the focus is nonzero and has different signs in different focal plane areas. If the helicity density changes sign, then the full helicity of the beam (averaged over the beam cross section at the focus) is zero and is conserved upon propagation. We reveal that the full helicity is zero when the full longitudinal component of the spin angular momentum is zero. If the helicity density does not change sign at the focus, such as in a circularly polarized optical vortex, then it is equal to the intensity in the focus, with the full helicity being equal to the beam power and conserving upon propagation. Although the helicity is related to the polarization state distribution across the beam at the focus, the expressions for the helicity density are found to be different from those for the longitudinal component of the spin angular momentum for the beams of interest.
Title: Optical Helicity of Light in the Tight Focus
Description:
Using the Richards–Wolf formalism, we obtain explicit analytical expressions for the optical helicity density at the tight focus of four different light beams: a linearly polarized optical vortex, an optical vortex with right-handed circular polarization, superposition of a cylindrical vector beam and a linearly polarized beam, and a beam with hybrid circular-azimuthal polarization.
We show that, in all four cases, the helicity density at the focus is nonzero and has different signs in different focal plane areas.
If the helicity density changes sign, then the full helicity of the beam (averaged over the beam cross section at the focus) is zero and is conserved upon propagation.
We reveal that the full helicity is zero when the full longitudinal component of the spin angular momentum is zero.
If the helicity density does not change sign at the focus, such as in a circularly polarized optical vortex, then it is equal to the intensity in the focus, with the full helicity being equal to the beam power and conserving upon propagation.
Although the helicity is related to the polarization state distribution across the beam at the focus, the expressions for the helicity density are found to be different from those for the longitudinal component of the spin angular momentum for the beams of interest.
Related Results
Abstract 14367: Abnormal Pulmonary Flow is Associated With Impaired Right Ventricular Coupling in Patients With COPD
Abstract 14367: Abnormal Pulmonary Flow is Associated With Impaired Right Ventricular Coupling in Patients With COPD
Introduction:
Cor Pulmonale
or right ventricular (RV) dysfunction due to pulmonary disease is an expected complication of COPD resulting from increased afte...
Scale-dependency Wettability of Tight Sandstone: Insights from an Eocene fluvial sandstone reservoir in the Bohai Bay Basin
Scale-dependency Wettability of Tight Sandstone: Insights from an Eocene fluvial sandstone reservoir in the Bohai Bay Basin
In the development of tight oil reservoirs, wettability determines the distribution and flow behavior of oil and water during reservoir development and enhanced oil recovery. Howev...
Development of electro‐optical PCBs with polymer waveguides for high‐speed intra‐system interconnects
Development of electro‐optical PCBs with polymer waveguides for high‐speed intra‐system interconnects
PurposeThe purpose of this paper is to study fabrication of optical‐PCBs on panel scale boards in a conventional modern PCB process environment. It evaluates impacts on board desig...
A V-Shape Optical Pin Interface for Board Level Optical Interconnect
A V-Shape Optical Pin Interface for Board Level Optical Interconnect
This paper introduces a new interface of an optical pin for Printed Circuit Boards (PCBs), the V-shape cut type which is an innovation from the 90-degree cut type optical pin. The ...
Contributions to optimal detection in OTDM and OCDMA optical receivers
Contributions to optimal detection in OTDM and OCDMA optical receivers
Recent developments in optical communication systems have increased the performance of optical networks. Low attenuation fiber optics, high spectral purity lasers and optical ampli...
The Fractures Optimization Method with the Threshold Pressure of Multistage Fracturing in Tight Oil Reservoir
The Fractures Optimization Method with the Threshold Pressure of Multistage Fracturing in Tight Oil Reservoir
Abstract
As permeability of tight oil reservoir is generally less than 0.1md, diameters of pore throats are primarily at the micrometer- and nanometer-scale. Differe...
Natural fractures in tight gas sandstones: a case study of the Upper Triassic Xujiahe Formation in Xinchang gas field, Western Sichuan Basin, China
Natural fractures in tight gas sandstones: a case study of the Upper Triassic Xujiahe Formation in Xinchang gas field, Western Sichuan Basin, China
AbstractThe Upper Triassic Xujiahe Formation is a typical tight gas reservoir in which natural fractures determine the migration, accumulation and production capacity of tight gas....
Effect of pore throats on the reservoir quality of tight sandstone: A case study of the Yanchang Formation in the Zhidan area, Ordos Basin
Effect of pore throats on the reservoir quality of tight sandstone: A case study of the Yanchang Formation in the Zhidan area, Ordos Basin
Abstract
Due to the tight sandstone widespread development of nanoscale pore-throat systems, the microscopic pore-throat characteristics of tight reservoirs are the ...

