Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads

View through CrossRef
Microseismic events commonly occur during the excavation of long wall panels and often cause rock-burst accidents when the roadway is influenced by dynamic loads. In this paper, the Fast Lagrangian Analysis of Continua in 3-Dimensions (FLAC3D) software is used to study the deformation and rock-burst potential of roadways under different dynamic and static loads. The results show that the larger the dynamic load is, the greater the increase in the deformation of the roadway under the same static loading conditions. A roadway under a high static load is more susceptible to deformation and instability when affected by dynamic loads. Under different static loading conditions, the dynamic responses of the roadway abutment stress distribution are different. When the roadway is shallow buried and the dynamic load is small, the stress and elastic energy density of the coal body in the area of the peak abutment stress after the dynamic load are greater than the static calculations. The dynamic load provides energy storage for the coal body in the area of the peak abutment stress. When the roadway is deep, a small dynamic load can still cause the stress in the coal body and the elastic energy density to decrease in the area of the peak abutment stress, and a rock-burst is more likely to occur in a deep mine roadway with a combination of a high static load and a weak dynamic load. When the dynamic load is large, the peak abutment stress decreases greatly after the dynamic loading, and under the same dynamic loading conditions, the greater the depth the roadway is, the greater the elastic energy released by the dynamic load. Control measures are discussed for different dynamic and static load sources of rock-burst accidents. The results provide a reference for the control of rock-burst disasters under dynamic loads.
Title: Numerical Analysis of Roadway Rock-Burst Hazard under Superposed Dynamic and Static Loads
Description:
Microseismic events commonly occur during the excavation of long wall panels and often cause rock-burst accidents when the roadway is influenced by dynamic loads.
In this paper, the Fast Lagrangian Analysis of Continua in 3-Dimensions (FLAC3D) software is used to study the deformation and rock-burst potential of roadways under different dynamic and static loads.
The results show that the larger the dynamic load is, the greater the increase in the deformation of the roadway under the same static loading conditions.
A roadway under a high static load is more susceptible to deformation and instability when affected by dynamic loads.
Under different static loading conditions, the dynamic responses of the roadway abutment stress distribution are different.
When the roadway is shallow buried and the dynamic load is small, the stress and elastic energy density of the coal body in the area of the peak abutment stress after the dynamic load are greater than the static calculations.
The dynamic load provides energy storage for the coal body in the area of the peak abutment stress.
When the roadway is deep, a small dynamic load can still cause the stress in the coal body and the elastic energy density to decrease in the area of the peak abutment stress, and a rock-burst is more likely to occur in a deep mine roadway with a combination of a high static load and a weak dynamic load.
When the dynamic load is large, the peak abutment stress decreases greatly after the dynamic loading, and under the same dynamic loading conditions, the greater the depth the roadway is, the greater the elastic energy released by the dynamic load.
Control measures are discussed for different dynamic and static load sources of rock-burst accidents.
The results provide a reference for the control of rock-burst disasters under dynamic loads.

Related Results

Investigation of the Optimal Layout of the Roadway in Closely Spaced Ultra‐Thick Coal Seams Mining with Remaining Coal Pillars
Investigation of the Optimal Layout of the Roadway in Closely Spaced Ultra‐Thick Coal Seams Mining with Remaining Coal Pillars
The reasonable layout of the roadway in closely spaced, ultra‐thick coal seam mining is of great significance to mining safety. Based on the research background of repeated roof le...
Roadway rock burst prediction based on catastrophe theory
Roadway rock burst prediction based on catastrophe theory
AbstractIn order to quantitatively calculate the critical depth and critical load of mines affected by rock burst, and to achieve effective prevention and control of rock burst in ...
Stress Distribution Around Roadway of Kunyang No. 2 Phosphate Mine: Analytical Study and Field Verification
Stress Distribution Around Roadway of Kunyang No. 2 Phosphate Mine: Analytical Study and Field Verification
When excavating roadways in underground mines, stress redistribution within the surrounding rock mass leads to stress concentration and release. Should the concentrated stresses ex...
Reliability-based design (RBD) of shallow foundations on rock masses
Reliability-based design (RBD) of shallow foundations on rock masses
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The reliability-based design (RBD) approach that separately accounts for variability and uncertainty in load(...
Study on the Influence of Mining Stress on the Sustainable Utilization of Floor Roadway in Qinan Coal Mine
Study on the Influence of Mining Stress on the Sustainable Utilization of Floor Roadway in Qinan Coal Mine
Aiming at the problem of large deformations and difficult maintenance of cross-mining floor roadways, taking the track transportation roadway of the cross-mining east wing floor in...
Experimental Study on the Escape Velocity of Miners during Mine Fire Periods
Experimental Study on the Escape Velocity of Miners during Mine Fire Periods
The purpose of this study is to accurately calculate the escape velocity of miners under different roadway conditions during mine fire periods. The experiment to examine escape vel...
Numerical Simulation of Fluid-Solid Coupling Heat Transfer in Excavating Roadway
Numerical Simulation of Fluid-Solid Coupling Heat Transfer in Excavating Roadway
Heat damage is an urgent problem to be solved in deep mining. The relevant factors in the excavation roadway significantly affect the cooling effect in the roadway. In this paper, ...

Back to Top