Javascript must be enabled to continue!
Experimental, theoretical and numerical study on the shear stress of adhesive layer in FRP-bamboo scrimber composite beams
View through CrossRef
The adhesive layer is an important factor affecting the mechanical properties of FRP- bamboo scrimber composite beams (FBSCB). However, studies on the interfacial shear stresses in the adhesive layers with both ends of FRP and bamboo scrimber beam aligned have been rarely reported. To this end, a two-parameter theoretical calculation model and a finite element model (FEM) based on cohesive zone model were hereby established to solve for the adhesive layer interface shear stresses, which was verified by four-point bending experiments. The results show that both the two-parameter theoretical model and the FEM can effectively compute the shear stress of the adhesive layer. Meanwhile, the FEM simulation results not only reflect the detailed changes of the shear stress, but also provide a better analysis of the shear stress at the adhesive layer with a small fluctuation range. There are three zones of shear stress at the adhesive layer of FBSCB under four-point bending load, i.e., the bending and shearing zone, the transition zone and the pure bending zone. In the bending and shearing zone, the shear stress of the adhesive layer interface increases 2.61 times and 2.5 times, respectively when the thickness and elastic modulus of FRP increase three times. However, the stress remains constant at zero in the pure bending zone.
Sustainable Development Press Limited
Title: Experimental, theoretical and numerical study on the shear stress of adhesive layer in FRP-bamboo scrimber composite beams
Description:
The adhesive layer is an important factor affecting the mechanical properties of FRP- bamboo scrimber composite beams (FBSCB).
However, studies on the interfacial shear stresses in the adhesive layers with both ends of FRP and bamboo scrimber beam aligned have been rarely reported.
To this end, a two-parameter theoretical calculation model and a finite element model (FEM) based on cohesive zone model were hereby established to solve for the adhesive layer interface shear stresses, which was verified by four-point bending experiments.
The results show that both the two-parameter theoretical model and the FEM can effectively compute the shear stress of the adhesive layer.
Meanwhile, the FEM simulation results not only reflect the detailed changes of the shear stress, but also provide a better analysis of the shear stress at the adhesive layer with a small fluctuation range.
There are three zones of shear stress at the adhesive layer of FBSCB under four-point bending load, i.
e.
, the bending and shearing zone, the transition zone and the pure bending zone.
In the bending and shearing zone, the shear stress of the adhesive layer interface increases 2.
61 times and 2.
5 times, respectively when the thickness and elastic modulus of FRP increase three times.
However, the stress remains constant at zero in the pure bending zone.
Related Results
Dynamic Characteristics Analysis of Three-Layer Steel–Concrete Composite Beams
Dynamic Characteristics Analysis of Three-Layer Steel–Concrete Composite Beams
The dynamic behavior of three-layer composite beams, consisting of concrete slabs and steel beams, is influenced by the structural configuration of each layer as well as the shear ...
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Improvement of Seismic Performance of Ordinary Reinforced Partially Grouted Concrete Masonry Shear Walls
Reinforced masonry constitutes about 10% of all low-rise construction in the US. Most of these structures are commercial and school buildings. It may also be used for multi-story h...
Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite
Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite
Magnetoelectric (ME) composites have recently attracted much attention and triggered a great number of research activities, owing to their potential applications in sensors and tra...
Increased strength of laminated bamboo beams using a shear connector adhesive method
Increased strength of laminated bamboo beams using a shear connector adhesive method
AbstractAt this time the timber with good quality has been difficult to obtain, so the wood is increasingly rare for building construction. To reduce deforestation due to logging f...
Constructing Symmetric Bamboo Domes and Bamboo Spheres. The Shape of Fullerenes C60 and C80 as a Template For Domes
Constructing Symmetric Bamboo Domes and Bamboo Spheres. The Shape of Fullerenes C60 and C80 as a Template For Domes
Since more than 20 years I have built many bamboo domes and bamboo spheres of vari- ous sizes in countries like Switzerland, Germany, Japan, Singapore, and the USA. As I have never...
Recent Situation and Control of Bamboo Diseases in China
Recent Situation and Control of Bamboo Diseases in China
The bamboo diseases occur in a rather common and acute way in China due to a marked deterioration of ecological environment of bamboo stands which have been caused partially by hum...
e0344 The mechanism research of FRP inhibits endothelial cell apoptosis
e0344 The mechanism research of FRP inhibits endothelial cell apoptosis
Background
Atherosclerosis is the most common cause of cardiovascular diseases in the world. Although the development of atherosclerosis appears to be the result ...
Odd version Mathieu-Gaussian beam based on Green function
Odd version Mathieu-Gaussian beam based on Green function
Like the theoretical pattern of non-diffracting Bessel beams, ideal non-diffracting Mathieu beams also carry infinite energy, but cannot be generated as a physically realizable ent...

