Javascript must be enabled to continue!
Global Alliances and Independent Domination in Some Classes of Graphs
View through CrossRef
A dominating set $S$ of a graph $G$ is a global (strong) defensive alliance if for every vertex $v\in S$, the number of neighbors $v$ has in $S$ plus one is at least (greater than) the number of neighbors it has in $V\setminus S$. The dominating set $S$ is a global (strong) offensive alliance if for every vertex $v\in V\setminus S$, the number of neighbors $v$ has in $S$ is at least (greater than) the number of neighbors it has in $V\setminus S$ plus one. The minimum cardinality of a global defensive (strong defensive, offensive, strong offensive) alliance is denoted by $\gamma_a(G)$ ($\gamma_{\hat a}(G)$, $\gamma_o(G)$, $\gamma_{\hat o}(G))$. We compare each of the four parameters $\gamma_a, \gamma_{\hat a}, \gamma_o, \gamma_{\hat o}$ to the independent domination number $i$. We show that $i(G)\le \gamma ^2_a(G)-\gamma_a(G)+1$ and $i(G)\le \gamma_{\hat{a}}^2(G)-2\gamma_{\hat{a}}(G)+2$ for every graph; $i(G)\le \gamma ^2_a(G)/4 +\gamma_a(G)$ and $i(G)\le \gamma_{\hat{a}}^2(G)/4 +\gamma_{\hat{a}}(G)/2$ for every bipartite graph; $i(G)\le 2\gamma_a(G)-1$ and $i(G)=3\gamma_{\hat{a}}(G)/2 -1$ for every tree and describe the extremal graphs; and that $\gamma_o(T)\le 2i(T)-1$ and $i(T)\le \gamma_{\hat o}(T)-1$ for every tree. We use a lemma stating that $\beta(T)+2i(T)\ge n+1$ in every tree $T$ of order $n$ and independence number $\beta(T)$.
Title: Global Alliances and Independent Domination in Some Classes of Graphs
Description:
A dominating set $S$ of a graph $G$ is a global (strong) defensive alliance if for every vertex $v\in S$, the number of neighbors $v$ has in $S$ plus one is at least (greater than) the number of neighbors it has in $V\setminus S$.
The dominating set $S$ is a global (strong) offensive alliance if for every vertex $v\in V\setminus S$, the number of neighbors $v$ has in $S$ is at least (greater than) the number of neighbors it has in $V\setminus S$ plus one.
The minimum cardinality of a global defensive (strong defensive, offensive, strong offensive) alliance is denoted by $\gamma_a(G)$ ($\gamma_{\hat a}(G)$, $\gamma_o(G)$, $\gamma_{\hat o}(G))$.
We compare each of the four parameters $\gamma_a, \gamma_{\hat a}, \gamma_o, \gamma_{\hat o}$ to the independent domination number $i$.
We show that $i(G)\le \gamma ^2_a(G)-\gamma_a(G)+1$ and $i(G)\le \gamma_{\hat{a}}^2(G)-2\gamma_{\hat{a}}(G)+2$ for every graph; $i(G)\le \gamma ^2_a(G)/4 +\gamma_a(G)$ and $i(G)\le \gamma_{\hat{a}}^2(G)/4 +\gamma_{\hat{a}}(G)/2$ for every bipartite graph; $i(G)\le 2\gamma_a(G)-1$ and $i(G)=3\gamma_{\hat{a}}(G)/2 -1$ for every tree and describe the extremal graphs; and that $\gamma_o(T)\le 2i(T)-1$ and $i(T)\le \gamma_{\hat o}(T)-1$ for every tree.
We use a lemma stating that $\beta(T)+2i(T)\ge n+1$ in every tree $T$ of order $n$ and independence number $\beta(T)$.
Related Results
Domination of Polynomial with Application
Domination of Polynomial with Application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...
Domination of polynomial with application
Domination of polynomial with application
In this paper, .We .initiate the study of domination. polynomial , consider G=(V,E) be a simple, finite, and directed graph without. isolated. vertex .We present a study of the Ira...
Motivations for Environmental Alliances: Generating and Internalizing Environmental and Knowledge Value
Motivations for Environmental Alliances: Generating and Internalizing Environmental and Knowledge Value
AbstractEnvironmental alliances are a common response to societal sustainability demands. In environmental alliances, firms collaboratively exploit and explore environmental techno...
Environmental turmoil and firms’ core structure dynamism: the moderating role of strategic alliances
Environmental turmoil and firms’ core structure dynamism: the moderating role of strategic alliances
PurposeMuch of the extant evidence in the marketing literature posits that firms use strategic alliances to share resources, costs and risks as paths to performance improvements. D...
Audit Pricing for Strategic Alliances: An Incomplete Contract Perspective
Audit Pricing for Strategic Alliances: An Incomplete Contract Perspective
AbstractWe study the pricing of audit services for strategic alliances, a governance structure involving an incomplete contract between separate firms. Since incomplete contracts d...
Introducing 3-Path Domination in Graphs
Introducing 3-Path Domination in Graphs
The dominating set of a graph G is a set of vertices D such that for every v ∈ V ( G ) either v ∈ D or v is adjacent to a vertex in D . The domination number, denoted γ...
Locating fair domination in graphs
Locating fair domination in graphs
Graphs considered here are simple, finite and undirected. A graph is denoted by [Formula: see text] and its vertex set by [Formula: see text] and edge set by [Formula: see text]. M...
On Tuza's conjecture in even co-chain graphs
On Tuza's conjecture in even co-chain graphs
In 1981, Tuza conjectured that the cardinality of a minimum set of edges that intersects every triangle of a graph is at most twice the cardinality of a maximum set of edge-disjoin...

