Javascript must be enabled to continue!
Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids
View through CrossRef
Abstract
Mesenchymal stem cell therapies promote wound healing by manipulating the local environment to enhance the function of host cells. Aggregation of mesenchymal stem cells (MSCs) into three-dimensional spheroids increases cell survival and augments their anti-inflammatory and proangiogenic potential, yet there is no consensus on the preferred conditions for maximizing spheroid function in this application. The objective of this study was to optimize conditions for forming MSC spheroids that simultaneously enhance their anti-inflammatory and proangiogenic nature. We applied a design of experiments (DOE) approach to determine the interaction between three input variables (number of cells per spheroid, oxygen tension, and inflammatory stimulus) on MSC spheroids by quantifying secretion of prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF), two potent molecules in the MSC secretome. DOE results revealed that MSC spheroids formed with 40,000 cells per spheroid in 1% oxygen with an inflammatory stimulus (Spheroid 1) would exhibit enhanced PGE2 and VEGF production versus those formed with 10,000 cells per spheroid in 21% oxygen with no inflammatory stimulus (Spheroid 2). Compared to Spheroid 2, Spheroid 1 produced fivefold more PGE2 and fourfold more VEGF, providing the opportunity to simultaneously upregulate the secretion of these factors from the same spheroid. The spheroids induced macrophage polarization, sprout formation with endothelial cells, and keratinocyte migration in a human skin equivalent model—demonstrating efficacy on three key cell types that are dysfunctional in chronic non-healing wounds. We conclude that DOE-based analysis effectively identifies optimal culture conditions to enhance the anti-inflammatory and proangiogenic potential of MSC spheroids.
Oxford University Press (OUP)
Title: Multifactorial Experimental Design to Optimize the Anti-Inflammatory and Proangiogenic Potential of Mesenchymal Stem Cell Spheroids
Description:
Abstract
Mesenchymal stem cell therapies promote wound healing by manipulating the local environment to enhance the function of host cells.
Aggregation of mesenchymal stem cells (MSCs) into three-dimensional spheroids increases cell survival and augments their anti-inflammatory and proangiogenic potential, yet there is no consensus on the preferred conditions for maximizing spheroid function in this application.
The objective of this study was to optimize conditions for forming MSC spheroids that simultaneously enhance their anti-inflammatory and proangiogenic nature.
We applied a design of experiments (DOE) approach to determine the interaction between three input variables (number of cells per spheroid, oxygen tension, and inflammatory stimulus) on MSC spheroids by quantifying secretion of prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF), two potent molecules in the MSC secretome.
DOE results revealed that MSC spheroids formed with 40,000 cells per spheroid in 1% oxygen with an inflammatory stimulus (Spheroid 1) would exhibit enhanced PGE2 and VEGF production versus those formed with 10,000 cells per spheroid in 21% oxygen with no inflammatory stimulus (Spheroid 2).
Compared to Spheroid 2, Spheroid 1 produced fivefold more PGE2 and fourfold more VEGF, providing the opportunity to simultaneously upregulate the secretion of these factors from the same spheroid.
The spheroids induced macrophage polarization, sprout formation with endothelial cells, and keratinocyte migration in a human skin equivalent model—demonstrating efficacy on three key cell types that are dysfunctional in chronic non-healing wounds.
We conclude that DOE-based analysis effectively identifies optimal culture conditions to enhance the anti-inflammatory and proangiogenic potential of MSC spheroids.
Related Results
Stem cells
Stem cells
What is a stem cell? The term is a combination of ‘cell’ and ‘stem’. A cell is a major category of living thing, while a stem is a site of growth and support for something else. In...
Differential marker expression by cultures rich in mesenchymal stem cells
Differential marker expression by cultures rich in mesenchymal stem cells
AbstractBackgroundMesenchymal stem cells have properties that make them amenable to therapeutic use. However, the acceptance of mesenchymal stem cells in clinical practice requires...
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
MARS-seq2.0: an experimental and analytical pipeline for indexed sorting combined with single-cell RNA sequencing v1
Human tissues comprise trillions of cells that populate a complex space of molecular phenotypes and functions and that vary in abundance by 4–9 orders of magnitude. Relying solely ...
Neuropathology of ALS: Spheroids
Neuropathology of ALS: Spheroids
I briefly review spheroids observed in the anterior horns of the spinal cord in amyotrophic lateral sclerosis (ALS). Spheroids are argentophilic bodies more than 20 μm in diameter....
Environmental Effects and Their Impact on Yield in Adjacent Experimental Plots of High-stem and Short-Stem Wheat Varieties
Environmental Effects and Their Impact on Yield in Adjacent Experimental Plots of High-stem and Short-Stem Wheat Varieties
Abstract
Xinhuamai 818 was used as the experimental material for high-stem wheat varieties, HHH was used as the control plot for high-stem wheat varieties (one letter repre...
Environmental Effects and Their impact on Yield in Adjacent Experimental Plots of High and Short Stem Wheat Varieties
Environmental Effects and Their impact on Yield in Adjacent Experimental Plots of High and Short Stem Wheat Varieties
Abstract
Using Xinhuamai818 as the experimental material for high stem wheat varieties, HHH as the control plot for high stem wheat varieties(One letter represents an exper...
Abstract P1-04-02: Multicellular spheroids to dissect the interplay between human immune system and cancer
Abstract P1-04-02: Multicellular spheroids to dissect the interplay between human immune system and cancer
Abstract
The interaction between various components in the tumor environment plays a pivotal role in tumor development, migration and metastasis. While the 2-dimensi...
Enhanced cellular engraftment of adipose-derived mesenchymal stem cell spheroids by using nanosheets as scaffolds
Enhanced cellular engraftment of adipose-derived mesenchymal stem cell spheroids by using nanosheets as scaffolds
AbstractThe short survival time of transplanted adipose-derived mesenchymal stem cells (ASCs) is a problem for skin wound healing. Transplantation after the formation of cellular s...


