Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Design and Evaluation of a Laminated Three-Phase Rotary Transformer for DFIG Applications

View through CrossRef
In doubly fed induction generators (DFIGs), the rotor is excited through slip-ring and brush assemblies. These slip-ring and brush assemblies often require frequent routine maintenance, which affects the reliability of the DFIG. Alternatively, a contact-less energy transfer system, such as a rotary transformer, can be utilized in place of the slip rings. In DFIGs, the rotor frequency is very low, under 5 Hz, and this can lead to a huge rotary transformer since the transformer size is inversely proportional to its operating frequency. However, in a rotor-tied DFIG, whereby the rotor is connected directly to the grid whilst the stator is connected to a back-to-back converter, the rotor frequency becomes the grid frequency and can lead to a reasonably sized rotary transformer. In this paper, the design methodology of a three-phase rotary transformer that can be used in rotor-tied DFIG applications is proposed. The rotary transformer is coupled to the power windings of the rotor-tied DFIG and can improve its reactive power capabilities. The proposed methodology is validated with finite element analysis in 3D and can be used for an efficient design process with the proposed error correction. The proposed methodology is then applied in the design of a 6 kVA rotary transformer. Remarkable practical results are presented to demonstrate the effectiveness of the methodology. The rotary transformer is subsequently coupled to a rotor-tied DFIG and an acceptable performance is demonstrated for the entire system.
Title: Design and Evaluation of a Laminated Three-Phase Rotary Transformer for DFIG Applications
Description:
In doubly fed induction generators (DFIGs), the rotor is excited through slip-ring and brush assemblies.
These slip-ring and brush assemblies often require frequent routine maintenance, which affects the reliability of the DFIG.
Alternatively, a contact-less energy transfer system, such as a rotary transformer, can be utilized in place of the slip rings.
In DFIGs, the rotor frequency is very low, under 5 Hz, and this can lead to a huge rotary transformer since the transformer size is inversely proportional to its operating frequency.
However, in a rotor-tied DFIG, whereby the rotor is connected directly to the grid whilst the stator is connected to a back-to-back converter, the rotor frequency becomes the grid frequency and can lead to a reasonably sized rotary transformer.
In this paper, the design methodology of a three-phase rotary transformer that can be used in rotor-tied DFIG applications is proposed.
The rotary transformer is coupled to the power windings of the rotor-tied DFIG and can improve its reactive power capabilities.
The proposed methodology is validated with finite element analysis in 3D and can be used for an efficient design process with the proposed error correction.
The proposed methodology is then applied in the design of a 6 kVA rotary transformer.
Remarkable practical results are presented to demonstrate the effectiveness of the methodology.
The rotary transformer is subsequently coupled to a rotor-tied DFIG and an acceptable performance is demonstrated for the entire system.

Related Results

Automatic Load Sharing of Transformer
Automatic Load Sharing of Transformer
Transformer plays a major role in the power system. It works 24 hours a day and provides power to the load. The transformer is excessive full, its windings are overheated which lea...
Design
Design
Conventional definitions of design rarely capture its reach into our everyday lives. The Design Council, for example, estimates that more than 2.5 million people use design-related...
Kunstharzpressholz zur Verstärkung von Brettschichtholz
Kunstharzpressholz zur Verstärkung von Brettschichtholz
AbstractEs wurden Biegeträger aus Brettschichtholz (BSH) untersucht, die zur Erhöhung der Tragfähigkeit und der Dauerhaftigkeit auf der Zug‐ und wahlweise auf der Druckseite mit Ku...
ANALISIS PENGARUH MASA OPERASIONAL TERHADAP PENURUNAN KAPASITAS TRANSFORMATOR DISTRIBUSI DI PT PLN (PERSERO)
ANALISIS PENGARUH MASA OPERASIONAL TERHADAP PENURUNAN KAPASITAS TRANSFORMATOR DISTRIBUSI DI PT PLN (PERSERO)
One cause the interruption of transformer is loading that exceeds the capabilities of the transformer. The state of continuous overload will affect the age of the transformer and r...
Simulation modeling study on short circuit ability of distribution transformer
Simulation modeling study on short circuit ability of distribution transformer
Abstract Under short circuit condition, the oil immersed distribution transformer will endure combined electro-thermal stress, eventually lead to the mechanical dama...
Discrete element parameter calibration and wear characteristics analysis of soil-rotary tillage blade in gneiss mountainous area
Discrete element parameter calibration and wear characteristics analysis of soil-rotary tillage blade in gneiss mountainous area
Abstract Aiming at the problems of fast wear and short service life of rotary tillage blade in gneiss mountainous area, and the lack of accurate and reliable discrete eleme...
LIFE CYCLE OF TRANSFORMER 110/X KV AND ITS VALUE
LIFE CYCLE OF TRANSFORMER 110/X KV AND ITS VALUE
In a deregulated environment, power companies are in the constant process of reducing the costs of operating power facilities, with the aim of optimally improving the quality of de...
MODAL ANALISIS PADA ROTARY KILN DENGAN MENGGUNAKAN METODE ELEMEN HINGGA
MODAL ANALISIS PADA ROTARY KILN DENGAN MENGGUNAKAN METODE ELEMEN HINGGA
This research is based on the general damage to the rotary kiln due to continuous use. Then the results from the burned in a Rotary Kiln So we need a prevention to overcome it. Tes...

Back to Top