Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Beach Erosion Characteristics Induced by Human Activities—A Case Study in Haiyang, Yellow Sea

View through CrossRef
Coastal zones, which serve as transitional areas between land and sea, possess unique ecological values. Sandy coasts, celebrated for their distinctive natural beauty and ideal recreational settings, have garnered significant attention. However, uncontrolled human activities can exacerbate erosion or even trigger more severe erosion along these coasts. This study utilizes unmanned aerial photography and typical beach profile survey data collected from the main areas of Wanmi Beach over the past eight years to quantify annual changes in beach erosion and elucidate the erosion characteristics and their variations across different shore profiles. Additionally, the impact of various types of human activities in different regions is analyzed, revealing the erosion patterns prevalent in the main areas of Wanmi Beach. The findings indicate that the eastern research area (ERA) has been in a continuous state of erosion, primarily due to a reduction in sediment supply in the region, with severe erosion observed on the foreshore of Fengxiang Beach and Wanmi Bathing Beach (WBB). In contrast, the central research area (CRA), particularly around Yangjiao Bay, has experienced significant siltation in recent years, with the highest siltation volume recorded between 2021 and 2023, totaling 90,352.91 m3. Nevertheless, the foreshore areas at both ends of the research area, distant from Yangjiao Bay, have been subject to erosion. The western research area (WRA) is notably impacted by surrounding aquaculture activities, leading to alternating periods of erosion and siltation on the beach surface. Consequently, due to the influence of human activities on different shore profiles, most of Wanmi Beach, except for the area near Yangjiao Bay, is experiencing erosion.
Title: Beach Erosion Characteristics Induced by Human Activities—A Case Study in Haiyang, Yellow Sea
Description:
Coastal zones, which serve as transitional areas between land and sea, possess unique ecological values.
Sandy coasts, celebrated for their distinctive natural beauty and ideal recreational settings, have garnered significant attention.
However, uncontrolled human activities can exacerbate erosion or even trigger more severe erosion along these coasts.
This study utilizes unmanned aerial photography and typical beach profile survey data collected from the main areas of Wanmi Beach over the past eight years to quantify annual changes in beach erosion and elucidate the erosion characteristics and their variations across different shore profiles.
Additionally, the impact of various types of human activities in different regions is analyzed, revealing the erosion patterns prevalent in the main areas of Wanmi Beach.
The findings indicate that the eastern research area (ERA) has been in a continuous state of erosion, primarily due to a reduction in sediment supply in the region, with severe erosion observed on the foreshore of Fengxiang Beach and Wanmi Bathing Beach (WBB).
In contrast, the central research area (CRA), particularly around Yangjiao Bay, has experienced significant siltation in recent years, with the highest siltation volume recorded between 2021 and 2023, totaling 90,352.
91 m3.
Nevertheless, the foreshore areas at both ends of the research area, distant from Yangjiao Bay, have been subject to erosion.
The western research area (WRA) is notably impacted by surrounding aquaculture activities, leading to alternating periods of erosion and siltation on the beach surface.
Consequently, due to the influence of human activities on different shore profiles, most of Wanmi Beach, except for the area near Yangjiao Bay, is experiencing erosion.

Related Results

Hydatid Disease of The Brain Parenchyma: A Systematic Review
Hydatid Disease of The Brain Parenchyma: A Systematic Review
Abstarct Introduction Isolated brain hydatid disease (BHD) is an extremely rare form of echinococcosis. A prompt and timely diagnosis is a crucial step in disease management. This ...
Breast Carcinoma within Fibroadenoma: A Systematic Review
Breast Carcinoma within Fibroadenoma: A Systematic Review
Abstract Introduction Fibroadenoma is the most common benign breast lesion; however, it carries a potential risk of malignant transformation. This systematic review provides an ove...
Flow Assurance Aspects of Intrusive Erosion Probes
Flow Assurance Aspects of Intrusive Erosion Probes
Abstract Sand erosion in subsea components and pipelines can cause serious design and production problems. Erosion is a complex process that is affected by numero...
Geohazards in the Yellow Sea and East China Sea
Geohazards in the Yellow Sea and East China Sea
ABSTRACT Shallow submarine geology in the Yellow and East China seas is dicta ted mostly by the proximity of the Yellow and Yangtze Rivers and by the late Quatern...
Impact of Bedrock Fracturing on River Erosion: An Experimental Approach
Impact of Bedrock Fracturing on River Erosion: An Experimental Approach
River erosion, via abrasion and plucking, plays a crucial role in the dynamics of continental landscapes. Indeed, fluvial erosion is thought to give the pace to hillslope erosion a...
Numerical Simulation of Gas–Liquid–Solid Three-Phase Erosion in a Gas Storage Tank Tee
Numerical Simulation of Gas–Liquid–Solid Three-Phase Erosion in a Gas Storage Tank Tee
The objective is to address the issue of gas-carrying particles generated by erosion wear problems in the transportation process of gas storage reservoir pipelines. In accordance w...
Two-dimensional hydrodynamic robust numerical model of soil erosion based on slopes and river basins
Two-dimensional hydrodynamic robust numerical model of soil erosion based on slopes and river basins
<div> <div> <div> <p>Erosion is an important issue in soil science and is related to many environmental problems, such as so...
Erosion Study for a 400 MMcf/D Completion: Cannonball Field, Offshore Trinidad
Erosion Study for a 400 MMcf/D Completion: Cannonball Field, Offshore Trinidad
Abstract The Cannonball Field is a one Tcf gas condensate development offshore Trinidad producing at a sustained rate in excess of 800 MMcf/D from three wells. The c...

Back to Top