Javascript must be enabled to continue!
Investigation of n-type GaN deposited on sapphire substrate with different small misorientations
View through CrossRef
The ntype GaN films have been grown on cplane sapphire with different small misorientation(0°—03°)by metalorganic chemical vapor deposition. It was observed by atomic force microscopy that the ntype GaN has the step flow growth mode, the flow steps of the ntype GaN surface are uniformly distribution on 02° and 03° misorientation sapphire substrate, it was observed clearly that random and poor distribution of the flow steps was caused by the step reconstruction on 0° misorientation sapphire substrate. The image quality parameter of electron backscatter diffraction indicated that the strains increase as the ntype GaN epilayer thickness increases on 0° misorientation sapphire substrate but do not vary obviously on 02° and 03° misorientation sapphire substrates. Electrical and optical properties demonstrated the ntype GaN grown on the 02° and 03° misorientation sapphire substrates have higher electron concentration and lower ratio of the intensity of yellow band to near band edge.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Investigation of n-type GaN deposited on sapphire substrate with different small misorientations
Description:
The ntype GaN films have been grown on cplane sapphire with different small misorientation(0°—03°)by metalorganic chemical vapor deposition.
It was observed by atomic force microscopy that the ntype GaN has the step flow growth mode, the flow steps of the ntype GaN surface are uniformly distribution on 02° and 03° misorientation sapphire substrate, it was observed clearly that random and poor distribution of the flow steps was caused by the step reconstruction on 0° misorientation sapphire substrate.
The image quality parameter of electron backscatter diffraction indicated that the strains increase as the ntype GaN epilayer thickness increases on 0° misorientation sapphire substrate but do not vary obviously on 02° and 03° misorientation sapphire substrates.
Electrical and optical properties demonstrated the ntype GaN grown on the 02° and 03° misorientation sapphire substrates have higher electron concentration and lower ratio of the intensity of yellow band to near band edge.
Related Results
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
Advanced HEMT Characteristics of Epitaxial Quality-improved GaN by Using Patterned Sapphire Substract
Advanced HEMT Characteristics of Epitaxial Quality-improved GaN by Using Patterned Sapphire Substract
INTRODUCTION
Accomplishing with the booming market of personal communication services and the fifth generation (5G) mobile systems, the demands for high frequency an...
GaN Growth Using GaN Buffer Layer
GaN Growth Using GaN Buffer Layer
High-quality gallium nitride (GaN) film was obtained for the first time using a GaN buffer layer on a sapphire substrate. An optically flat and smooth surface was obtained over a t...
(Invited) From MRTA to SMRTA: Improvements in Activating Implanted Dopants in GaN
(Invited) From MRTA to SMRTA: Improvements in Activating Implanted Dopants in GaN
GaN and related compounds have received a great deal of attention from the research community due to their tunable direct bandgap, radiation hardness, and a favorable Baliga figure...
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Advanced AlGaN/GaN HEMT technology, design, fabrication and characterization
Nowadays, the microelectronics technology is based on the mature and very well established silicon (Si) technology. However, Si exhibits some important limitations regarding its vo...
Novel approaches for robust polaritonics
Novel approaches for robust polaritonics
The possibility of having low-threshold, inversion-less lasers, makinguse of the macroscopic occupation, of the low density of states, at thebottom of the lower polariton branch, h...
High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes
High Performance GaN-Based Ultraviolet Photodetector via Te/Metal Electrodes
Photodetectors (PDs) based on two-dimensional (2D) materials have promising applications in modern electronics and optoelectronics. However, due to the intralayer recombination of ...

