Javascript must be enabled to continue!
Parameterization of Wind Evolution using Lidar
View through CrossRef
Abstract. Wind evolution refers to the change of the turbulence structure of the eddies over time while the eddies are advected by the main flow over space. With the development of the lidar-assisted wind turbine control, modelling of the wind evolution becomes an interesting topic, because the control system should only react to the changes in the wind field which can be predicted accurately over the distance to avoid harmful and unnecessary control action. This paper aims to achieve a parameterization model for the wind evolution model to predict the wind evolution model parameters according to the wind field conditions. For this purpose, a two-parameter wind evolution model suggested in literature was applied to model the wind evolution and the wind evolution was estimated using lidar data. A statistical analysis was done to reveal the characteristics of wind evolution model parameters. Gaussian process regression was applied to achieve the parameterization model. The results have proven the applicability of Gaussian process regression model to predict the wind evolution model parameters with sufficient accuracy.
Title: Parameterization of Wind Evolution using Lidar
Description:
Abstract.
Wind evolution refers to the change of the turbulence structure of the eddies over time while the eddies are advected by the main flow over space.
With the development of the lidar-assisted wind turbine control, modelling of the wind evolution becomes an interesting topic, because the control system should only react to the changes in the wind field which can be predicted accurately over the distance to avoid harmful and unnecessary control action.
This paper aims to achieve a parameterization model for the wind evolution model to predict the wind evolution model parameters according to the wind field conditions.
For this purpose, a two-parameter wind evolution model suggested in literature was applied to model the wind evolution and the wind evolution was estimated using lidar data.
A statistical analysis was done to reveal the characteristics of wind evolution model parameters.
Gaussian process regression was applied to achieve the parameterization model.
The results have proven the applicability of Gaussian process regression model to predict the wind evolution model parameters with sufficient accuracy.
Related Results
Development of a multimodal imaging system based on LIDAR
Development of a multimodal imaging system based on LIDAR
(English) Perception of the environment is an essential requirement for the fields of autonomous vehicles and robotics, that claim for high amounts of data to make reliable decisio...
Mapping horizontal wind speed using a single Doppler Wind Lidar scanning horizontally: a test case over Paris
Mapping horizontal wind speed using a single Doppler Wind Lidar scanning horizontally: a test case over Paris
Scanning Doppler Wind Lidars are used in a variety of applications, thanks to the versatility brought by their scanning head. Their principal output is the wind speed along the lid...
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Analysis of Senegal Type Vertical Axis Wind Turbines Arrangement in Wind Farm
Background:
In a wind farm, the wind speed of the downstream wind turbine will be
lower than the wind speed of the upstream wind turbine due to the influence of the wake. Therefore...
Unraveling the lidar-turbulence paradox
Unraveling the lidar-turbulence paradox
The meteorological community, and in particular the wind energy community, have been trying to establish a methodology to correct/convert turbulence measures derived from measureme...
Airborne LiDAR for DEM generation: some critical issues
Airborne LiDAR for DEM generation: some critical issues
Airborne LiDAR is one of the most effective and reliable means of terrain data collection. Using LiDAR data for digital elevation model (DEM) generation is becoming a standard prac...
Savonius Rotor for Offshore Wind Energy Conversion
Savonius Rotor for Offshore Wind Energy Conversion
Abstract
Analysis of performance is presented for wind energy conversion by a Savonius type vertical axis rotor configured for generation of electrical power. The...
Updates on the OpenFAST Lidar Simulator
Updates on the OpenFAST Lidar Simulator
Abstract
Lidar systems are able to measure the wind speed remotely by detecting the aerosol movement caused by wind. A nacelle-based lidar system scanning the wind i...
Performance Test and Simulation Study on the Air Path of CAP1400 Passive Containment Cooling System
Performance Test and Simulation Study on the Air Path of CAP1400 Passive Containment Cooling System
As a large scale passive pressurized water reactor nuclear power plant, CAP1400 can remove the reactor decay heat to outside containment with the air cooling in the air flow path o...

