Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Effect of the moisture states of artificial fly ash aggregate as a partial river sand replacement on bulk density and mechanical strengths of hardened concrete

View through CrossRef
In this study, artificial fly ash aggregate (FAA) under oven-dry (OD) and natural (N) states was employed for partially replacing natural river sand (RS) to investigate effect of moisture states of FAA on slump of fresh concrete, bulk density and mechanical strengths (i.e., flexural strength and compressive strength) of hardened concrete. The FAA with particle sizes ranging from 1.25 to 5 mm was made from 85% Class-F fly ash, 15% Porland cement, a water-to-binder ratio of 0.21, and cured for 1 day in air and 13 days in water condition. Compared with RS, density and bulk density of FAA were lower by 22.4 and 32.5%, respectively, while water absorption was significantly higher. Based on the particle size distribution results of fine aggregate mixtures (including FAA and RS), replacing RS with FAA at volume ratios of 20 and 40% were selected for producing concrete. The slump of fresh concrete with 20 and 40% replacements of FAA under the N state was higher than that with corresponding replacement of FAA in the OD state and the fresh control concrete without FAA had the highest slump. The use of FAA changed insignificantly bulk density at 28 days of hardened concrete, regardless of FAA moisture states. In contrast, the flexural strength at 28 days of hardened concrete declined when FAA content increased, and the difference in flexural strength of hardened concretes using FAA under different moisture states was in a range from 9.3 to 13.6%. Meanwhile, the compressive strength at 3, 7, and 28 days of hardened concrete tended to increase when using FAA in the OD state and decreased when using FAA in the N state. Consequently, 40% replacement of RS with FAA in OD state can be suggested for the concrete production to limit the exploitation of RS and utilize the most fly ash released from coal-fired power plants, towards sustainable development for the concrete industry.
Title: Effect of the moisture states of artificial fly ash aggregate as a partial river sand replacement on bulk density and mechanical strengths of hardened concrete
Description:
In this study, artificial fly ash aggregate (FAA) under oven-dry (OD) and natural (N) states was employed for partially replacing natural river sand (RS) to investigate effect of moisture states of FAA on slump of fresh concrete, bulk density and mechanical strengths (i.
e.
, flexural strength and compressive strength) of hardened concrete.
The FAA with particle sizes ranging from 1.
25 to 5 mm was made from 85% Class-F fly ash, 15% Porland cement, a water-to-binder ratio of 0.
21, and cured for 1 day in air and 13 days in water condition.
Compared with RS, density and bulk density of FAA were lower by 22.
4 and 32.
5%, respectively, while water absorption was significantly higher.
Based on the particle size distribution results of fine aggregate mixtures (including FAA and RS), replacing RS with FAA at volume ratios of 20 and 40% were selected for producing concrete.
The slump of fresh concrete with 20 and 40% replacements of FAA under the N state was higher than that with corresponding replacement of FAA in the OD state and the fresh control concrete without FAA had the highest slump.
The use of FAA changed insignificantly bulk density at 28 days of hardened concrete, regardless of FAA moisture states.
In contrast, the flexural strength at 28 days of hardened concrete declined when FAA content increased, and the difference in flexural strength of hardened concretes using FAA under different moisture states was in a range from 9.
3 to 13.
6%.
Meanwhile, the compressive strength at 3, 7, and 28 days of hardened concrete tended to increase when using FAA in the OD state and decreased when using FAA in the N state.
Consequently, 40% replacement of RS with FAA in OD state can be suggested for the concrete production to limit the exploitation of RS and utilize the most fly ash released from coal-fired power plants, towards sustainable development for the concrete industry.

Related Results

Strengths of Geo Polymer Concrete by Adding Metakaoline
Strengths of Geo Polymer Concrete by Adding Metakaoline
Based0on the results obtained from this study0,the following Conclusions seems to be valid. The increase0in percentage replacement of Fly Ash with Metakaoline from 0% to 10.00% cau...
Influence of fly ash and basalt fibers on the properties of recycled pervious concrete
Influence of fly ash and basalt fibers on the properties of recycled pervious concrete
As an environmentally friendly building material, recycled pervious concrete can not only alleviate the increasingly severe urban flooding and heat island effect, but also realize ...
Study of the Design and Mechanical Properties of the Mix Proportion for Desulfurization Gypsum–Fly Ash Flowable Lightweight Soil
Study of the Design and Mechanical Properties of the Mix Proportion for Desulfurization Gypsum–Fly Ash Flowable Lightweight Soil
In order to solve the global problem of bridge head jumping caused by the insufficient compaction of the roadbed in the transition section of highways and bridges, a desulfurizatio...
The study of the freeze-thaw resistance and carbonation resistance of manufactured sand-RAC based on fly ash and slag powder
The study of the freeze-thaw resistance and carbonation resistance of manufactured sand-RAC based on fly ash and slag powder
Abstract To advance the use of industrial solid waste and recycled concrete, this study explores the impact of fly ash and slag powder on the mechanical properties, ...
Influence of the characteristic of input materials on formation and properties of sintered fly ash body
Influence of the characteristic of input materials on formation and properties of sintered fly ash body
Artificial aggregate from sintered fly ash is an example of material, which can be used solely on the basis of fly ash without any additions. However, to ensure optimal progress of...
Microstructure and Mechanical Behavior of Concrete Based on Crushed Sand Combined with Alluvial Sand
Microstructure and Mechanical Behavior of Concrete Based on Crushed Sand Combined with Alluvial Sand
The aim of this work is to reduce the overexploitation of river sand by proposing a combination of crushed sand and river sand to develop an optimal mix design for concrete. The ap...
EFEK PERAWATAN TERHADAP KARAKTERISTIK BETON GEOPOLIMER
EFEK PERAWATAN TERHADAP KARAKTERISTIK BETON GEOPOLIMER
Geopolymer concrete is a kind of concrete that does not use portland cement as binder but utilizes natural material that contents silica as fly ash, rice husk ash, etcetera.The use...
ANALYSIS OF MARSHALL CHARACTERISTICS WITH FLY ASH MATERIAL FOR STONE DUST SUBSTITUTION AS FILLER IN HRS-WC MIXTURE
ANALYSIS OF MARSHALL CHARACTERISTICS WITH FLY ASH MATERIAL FOR STONE DUST SUBSTITUTION AS FILLER IN HRS-WC MIXTURE
Lataston asphalt mix is a thin layer of asphalt concrete that is often used on light-traffic roads because it produces roads with good flexibility and durability. An economical way...

Back to Top