Javascript must be enabled to continue!
Gas Porosity Defect – What It Means and How to Respond
View through CrossRef
The foundries are facing problem-related to the selection of the parameter’s value for minimum rejection and maximum productivity. The furan no-bake binders system guaranteed dimensional stability and a comparative good surface finish of the casting. Based on past data in the industry, it is found that gas porosity defect is one of the highest. The phenomenon of the formation of the bubble in the fissures of the mould-metal interface, and later on trapping during the solidification leads to gas porosity. The current research work is focused on the minimization of the defect by the selection of the optimum range of input variables. Based on rigorous literature survey and industrial expert’s opinion, it is found that the parameters like grain fineness number (GFN) of the sand, loss on ignition (LoI) of the used sand, the sand temperature at the mixing time, potential of hydrogen (pH) are important parameters for gas porosity defect in the casting.Design-Expert software and particularly response surface methodology (RSM) and sequential approach using the face-centered central composite design is used for the experiments. The results show that a quadratic model with the removal of some insignificant term is a comparatively best fit for gas porosity defects. After analysis, various favorable levels of different parameters are obtained. The research work is based on realistic problems of the foundries and based on the experimental work. Thus, the provided solution is very much useful for foundries to reduce the rejection, particularly for furan no-bake with furfuryl alcohol as resin and sulphonic acid as catalyst. The research problem addressed in the paper is a genuine problem of the foundries and the sole work is based on experimental evidence.
Penerbit Universiti Kebangsaan Malaysia (UKM Press)
Title: Gas Porosity Defect – What It Means and How to Respond
Description:
The foundries are facing problem-related to the selection of the parameter’s value for minimum rejection and maximum productivity.
The furan no-bake binders system guaranteed dimensional stability and a comparative good surface finish of the casting.
Based on past data in the industry, it is found that gas porosity defect is one of the highest.
The phenomenon of the formation of the bubble in the fissures of the mould-metal interface, and later on trapping during the solidification leads to gas porosity.
The current research work is focused on the minimization of the defect by the selection of the optimum range of input variables.
Based on rigorous literature survey and industrial expert’s opinion, it is found that the parameters like grain fineness number (GFN) of the sand, loss on ignition (LoI) of the used sand, the sand temperature at the mixing time, potential of hydrogen (pH) are important parameters for gas porosity defect in the casting.
Design-Expert software and particularly response surface methodology (RSM) and sequential approach using the face-centered central composite design is used for the experiments.
The results show that a quadratic model with the removal of some insignificant term is a comparatively best fit for gas porosity defects.
After analysis, various favorable levels of different parameters are obtained.
The research work is based on realistic problems of the foundries and based on the experimental work.
Thus, the provided solution is very much useful for foundries to reduce the rejection, particularly for furan no-bake with furfuryl alcohol as resin and sulphonic acid as catalyst.
The research problem addressed in the paper is a genuine problem of the foundries and the sole work is based on experimental evidence.
Related Results
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Comparisons of Pore Structure for Unconventional Tight Gas, Coalbed Methane and Shale Gas Reservoirs
Extended abstract
Tight sands gas, coalbed methane and shale gas are three kinds of typical unconventional natural gas. With the decrease of conventional oil and gas...
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Unconventional Reservoirs: Basic Petrophysical Concepts for Shale Gas
Abstract
Unconventional reservoirs have burst with considerable force in oil and gas production worldwide. Shale Gas is one of them, with intense activity taking pla...
Porosity Distribution of Carbonate Reservoirs Using Low Field NMR
Porosity Distribution of Carbonate Reservoirs Using Low Field NMR
Abstract
Alberta contains significant deposits of oil and gas in carbonate formations. Carbonates tend to have fairly tight matrix structures, resulting in low pr...
A New IPR Curve Of Gas-Water Well In Gas Reservoirs Undergoing Simultaneous Water Production
A New IPR Curve Of Gas-Water Well In Gas Reservoirs Undergoing Simultaneous Water Production
Abstract
Based on principle of mass conservation, this paper sets up a new mathematical model of gas-water two-phase underground percolation, and the model includ...
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field
Critical Gas Saturation During Depressurisation and its Importance in the Brent Field.
Abstract
After some 20 years of pressure ...
Challenges of Horizontal Well and Successful Cases for Tight Gas Development in China
Challenges of Horizontal Well and Successful Cases for Tight Gas Development in China
Abstract
Low production rate and low estimate ultimate recovery are the most negative factors for gas well in tight gas development. Horizontal wells which can ef...
Understanding Unconventional Gas Reservoir Damages
Understanding Unconventional Gas Reservoir Damages
Abstract
It is estimated that there are large reserves of unconventional gas located throughout the world, including coalbed methane, shale gas and tight gas sand...
Multidetector Pulsed-Neutron Tool Application in Low-Porosity Reservoir–A Case Study in Mutiara Field, Indonesia
Multidetector Pulsed-Neutron Tool Application in Low-Porosity Reservoir–A Case Study in Mutiara Field, Indonesia
In mature fields, pulsed-neutron logging is commonly used to solve for the remaining saturation behind the casing. For years, sigma-based saturation has been used to calculate gas ...

