Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Géométrie complexe I

View through CrossRef
Complex Banach spaces E are existence spaces for classes of plurisubharmonic functions having classes of control sets in E. Two classes F 1 and F 2 are considered here, both are important for applications to complex analysis : F 1 = PSH - ( G ) is the class of the strictly negativ psh-functions in a bounded domain G of E ; F 2 denoted by \mathcal{L}_\sigma(E) \subset P S H(E) is the class of the functions f ( x ) of logarithmic growth σ in E , 0 < σ < +∞. Both F 1 and F 2 have for control sets the not F-pluripolar sets A, giving an upper semi-continous control f(x) \leq \phi_A^*(x, m) for f ∈ F, if f ( x ) ≤ m for x ∈ A. Sets ω in E such B ( O,r ) ∩ ω is B ( O, r ) -pluripolar for r > r 0 are \mathcal{L} -pluripolar. Pluripolar cones in E and sets f ( x ) = — ∞ for f ∈ PSH ( E ) upper bounded in each ball in E must be \mathcal{L} -pluripolar. Sequences of f_n(x) \in \mathcal{L}_\sigma ( E ) with f n ( x ) ↘ —∞ in E are of two different kinds : a ) the convergence is uniform on each bounded set in E, or b ) it is uniform only on \mathcal{L} -pluripolar sets in E . Bounds are obtained for the Lelong number ν ( f,x ) for f ∈ F 1 and x ∈ G' ⊂ G. If W is an analytic set in G of pure codimension p, with the set of regular points W' a connected manifold, then ν ( f,x ) has a constant value ν ( f,W' ) ≥ 0 for x ∈ W', with possible exception for x in a locally pluripolar set A ⊂ W', and ν ( f,x ) > ν ( f,W' ) for x ∈ A. For f ∈ PSH ( G\W ) and W a singularity for f, then p = 1, and a negativ number ν ( f,W' ) is defined; W is a logarithmic singularity if ν ( f,W' ) is finite ; ν ( f,x ) = ν ( f,W' ) holds with possible exception for such a set A ⊂ W' and ν ( f,x ) > ν ( f,W' ) for x ∈ A .
Title: Géométrie complexe I
Description:
Complex Banach spaces E are existence spaces for classes of plurisubharmonic functions having classes of control sets in E.
Two classes F 1 and F 2 are considered here, both are important for applications to complex analysis : F 1 = PSH - ( G ) is the class of the strictly negativ psh-functions in a bounded domain G of E ; F 2 denoted by \mathcal{L}_\sigma(E) \subset P S H(E) is the class of the functions f ( x ) of logarithmic growth σ in E , 0 < σ < +∞.
Both F 1 and F 2 have for control sets the not F-pluripolar sets A, giving an upper semi-continous control f(x) \leq \phi_A^*(x, m) for f ∈ F, if f ( x ) ≤ m for x ∈ A.
Sets ω in E such B ( O,r ) ∩ ω is B ( O, r ) -pluripolar for r > r 0 are \mathcal{L} -pluripolar.
Pluripolar cones in E and sets f ( x ) = — ∞ for f ∈ PSH ( E ) upper bounded in each ball in E must be \mathcal{L} -pluripolar.
Sequences of f_n(x) \in \mathcal{L}_\sigma ( E ) with f n ( x ) ↘ —∞ in E are of two different kinds : a ) the convergence is uniform on each bounded set in E, or b ) it is uniform only on \mathcal{L} -pluripolar sets in E .
Bounds are obtained for the Lelong number ν ( f,x ) for f ∈ F 1 and x ∈ G' ⊂ G.
If W is an analytic set in G of pure codimension p, with the set of regular points W' a connected manifold, then ν ( f,x ) has a constant value ν ( f,W' ) ≥ 0 for x ∈ W', with possible exception for x in a locally pluripolar set A ⊂ W', and ν ( f,x ) > ν ( f,W' ) for x ∈ A.
For f ∈ PSH ( G\W ) and W a singularity for f, then p = 1, and a negativ number ν ( f,W' ) is defined; W is a logarithmic singularity if ν ( f,W' ) is finite ; ν ( f,x ) = ν ( f,W' ) holds with possible exception for such a set A ⊂ W' and ν ( f,x ) > ν ( f,W' ) for x ∈ A .

Related Results

Hilbertova aritmetizace geometrie
Hilbertova aritmetizace geometrie
Tato práce se podrobně věnuje způsobu, jakým David Hilbert (1862–1943) pojal aritmetizaci geometrie v knize Grundlagen der Geometrie z roku 1899. Nejprve stručně představíme Hilber...
Complexe fraternel et relations entre pairs
Complexe fraternel et relations entre pairs
En psychanalyse, le complexe fraternel n’a été reconnu que tardivement comme un véritable organisateur de la vie psychique, au même titre que le complexe d’Œdipe. Il met en évidenc...
Interactions sur tablettes numériques dans le cadre de l’apprentissage de la géométrie dans l’espace
Interactions sur tablettes numériques dans le cadre de l’apprentissage de la géométrie dans l’espace
De nombreux enseignants et de nombreuses institutions scolaires se posent la question du bénéfice pédagogique apporté par les tablettes numériques. Cet ouvrage montre l’impact posi...
Zur Theorie der Spinoren im Riemannschen Raum
Zur Theorie der Spinoren im Riemannschen Raum
Die Theorie der Spinoren im RIEMANNschen Raum von INFELD und VAN DER WAERDEN wird mit Hilfe der bereits in der projektiven Relativitätstheorie bewährten Methode der Basisvektoren w...
Penser la trans-formation de la formation : introduire la connaissance complexe, reliante et noétique
Penser la trans-formation de la formation : introduire la connaissance complexe, reliante et noétique
Cet article se propose d'apporter des éléments de compréhension de la crise à partir de la pensée complexe développée par Edgar Morin, en prenant appui sur la nécessaire trans-form...
Seismic survey results from a buried valley study, Elora and Guelph, Ontario
Seismic survey results from a buried valley study, Elora and Guelph, Ontario
Les vallées enfouies constituent un type d'aquifère important dans le paysage glaciaire du Canada. En raison de l'histoire complexe de l'érosion et du remplissage, il peut être dif...
Le complexe de Laïos selon John Munder Ross
Le complexe de Laïos selon John Munder Ross
Résumé Freud omet Laïos, paradigme du mauvais père, quand il construit le complexe d’OEdipe. La pathologie narcissique et criminelle de Laïos est déterminée par des facteurs transg...
Redactioneel: Gezinnen met meervoudige en complexe problemen
Redactioneel: Gezinnen met meervoudige en complexe problemen
‘Gezinnen met meervoudige en complexe problemen’ is het eerste themanummer van Jeugd in Ontwikkeling. Waarom een themanummer? De ondersteuning van de gezinnen waarover dit themanum...

Back to Top