Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

The Dynamical Mordell–Lang Conjecture for Skew-Linear Self-Maps. Appendix by Michael Wibmer

View through CrossRef
AbstractLet $k$ be an algebraically closed field of characteristic $0$, let $N\in{\mathbb{N}}$, let $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ be a nonconstant morphism, and let $A:{\mathbb{A}}^N{\longrightarrow } {\mathbb{A}}^N$ be a linear transformation defined over $k({\mathbb{P}}^1)$, that is, for a Zariski-open dense subset $U\subset{\mathbb{P}}^1$, we have that for $x\in U(k)$, the specialization $A(x)$ is an $N$-by-$N$ matrix with entries in $k$. We let $f:{\mathbb{P}}^1\times{\mathbb{A}}^N{\dashrightarrow } {\mathbb{P}}^1\times{\mathbb{A}}^N$ be the rational endomorphism given by $(x,y)\mapsto (\,g(x), A(x)y)$. We prove that if $g$ induces an automorphism of ${\mathbb{A}}^1\subset{\mathbb{P}}^1$, then each irreducible curve $C\subset{\mathbb{A}}^1\times{\mathbb{A}}^N$ that intersects some orbit $\mathcal{O}_f(z)$ in infinitely many points must be periodic under the action of $f$. Furthermore, in the case $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ is an endomorphism of degree greater than $1$, then we prove that each irreducible subvariety $Y\subset{\mathbb{P}}^1\times{\mathbb{A}}^N$ intersecting an orbit $\mathcal{O}_f(z)$ in a Zariski dense set of points must be periodic. Our results provide the desired conclusion in the Dynamical Mordell–Lang Conjecture in a couple new instances. Moreover, our results have interesting consequences toward a conjecture of Rubel and toward a generalized Skolem–Mahler–Lech problem proposed by Wibmer in the context of difference equations. In the appendix it is shown that the results can also be used to construct Picard–Vessiot extensions in the ring of sequences.
Title: The Dynamical Mordell–Lang Conjecture for Skew-Linear Self-Maps. Appendix by Michael Wibmer
Description:
AbstractLet $k$ be an algebraically closed field of characteristic $0$, let $N\in{\mathbb{N}}$, let $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ be a nonconstant morphism, and let $A:{\mathbb{A}}^N{\longrightarrow } {\mathbb{A}}^N$ be a linear transformation defined over $k({\mathbb{P}}^1)$, that is, for a Zariski-open dense subset $U\subset{\mathbb{P}}^1$, we have that for $x\in U(k)$, the specialization $A(x)$ is an $N$-by-$N$ matrix with entries in $k$.
We let $f:{\mathbb{P}}^1\times{\mathbb{A}}^N{\dashrightarrow } {\mathbb{P}}^1\times{\mathbb{A}}^N$ be the rational endomorphism given by $(x,y)\mapsto (\,g(x), A(x)y)$.
We prove that if $g$ induces an automorphism of ${\mathbb{A}}^1\subset{\mathbb{P}}^1$, then each irreducible curve $C\subset{\mathbb{A}}^1\times{\mathbb{A}}^N$ that intersects some orbit $\mathcal{O}_f(z)$ in infinitely many points must be periodic under the action of $f$.
Furthermore, in the case $g:{\mathbb{P}}^1{\longrightarrow } {\mathbb{P}}^1$ is an endomorphism of degree greater than $1$, then we prove that each irreducible subvariety $Y\subset{\mathbb{P}}^1\times{\mathbb{A}}^N$ intersecting an orbit $\mathcal{O}_f(z)$ in a Zariski dense set of points must be periodic.
Our results provide the desired conclusion in the Dynamical Mordell–Lang Conjecture in a couple new instances.
Moreover, our results have interesting consequences toward a conjecture of Rubel and toward a generalized Skolem–Mahler–Lech problem proposed by Wibmer in the context of difference equations.
In the appendix it is shown that the results can also be used to construct Picard–Vessiot extensions in the ring of sequences.

Related Results

Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
<p align="justify"><span style="color: #000000;"><span style="font-family: 'Times New Roman', serif;"><span><span lang="pt-BR">É indiscutível a import...
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
<p><em><span style="font-size: 11.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-langua...
First exploration of the entire runaway greenhouse transition with a 3D global climate model
First exploration of the entire runaway greenhouse transition with a 3D global climate model
&lt;p align=&quot;justify&quot;&gt;&lt;span lang=&quot;en-US&quot;&gt;The runaway greenhouse effect [1-4] is a very interesting process for terrestr...
Deep mass redistribution prior to the Mw 8.8 Maule earthquake (Chile, 2010) revealed by GRACE satellite gravity
Deep mass redistribution prior to the Mw 8.8 Maule earthquake (Chile, 2010) revealed by GRACE satellite gravity
&lt;p align=&quot;justify&quot;&gt;&lt;span lang=&quot;en-US&quot;&gt;Subduction zones are places of intense seismic activity where the largest rupt...
The moon-coverage: a Python tool for mission and instrument planning
The moon-coverage: a Python tool for mission and instrument planning
&lt;p align=&quot;justify&quot;&gt;&lt;strong&gt;&lt;span lang=&quot;en-US&quot;&gt;Abstract:&lt;/span&gt;&lt;/strong&gt;&am...
KEBIASAAN MAKAN DAN ASUPAN ZAT GIZI MASYARAKAT HALMAHERA
KEBIASAAN MAKAN DAN ASUPAN ZAT GIZI MASYARAKAT HALMAHERA
<p class="MsoNormal" style="margin: 0cm 7.1pt 6pt 14.2pt; text-align: justify; text-indent: 1cm;"><span style="font-size: 10pt;" lang="en-us" xml:lang="en-us">Every com...
POLA AKTIVITAS, KONSUMSI PANGAN, STATUS GIZI DAN KESEHATAN ANAK JALANAN DI KOTA BANDUNG
POLA AKTIVITAS, KONSUMSI PANGAN, STATUS GIZI DAN KESEHATAN ANAK JALANAN DI KOTA BANDUNG
<p class="MsoTitle" style="margin: 0cm 13.05pt 6pt 17.85pt; text-align: justify; text-indent: 26.95pt;"><span style="font-size: 10pt;" lang="en-us" xml:lang="en-us">The...

Back to Top