Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

CO2 Leakage Prevention Technologies

View through CrossRef
Abstract A central challenge of both scientific and regulatory interest is how to ensure carbon dioxide (CO2) is securely contained within a storage site. The fate of CO2 in the subsurface describes the range of processes that progressively trap the CO2. Pure phase CO2 can be trapped within the pore space as (i) residual saturation, and (ii) capillary trapping where the buoyancy forces exerted by a vertical column of CO2 are not sufficient to overcome the capillary forces either within the reservouir rock or to overcome the caprock. Aside from the physical trapping of free CO2, it can be trapped as an aqueous phase. An alternative to injection of pure phase CO2 is to inject CO2 saturated waters which are denser than the unsaturated formation waters thus eliminating the problems associated with buoyancy. Further, in order for the CO2 to be locked away geochemically as mineral trapping, it must first enter an aqueous phase in order for it to be reactive. Here we explore engineering technologies for enhancing the dissolution of CO2 in formation fluids to mitigate leakage and minimise the risk of CO2 escaping from the storage site. Conceptual process engineering and design of CO2 injection systems downstream were performed with primary aim of rendering integrated injection strategies suitable for use in enhancing permanent storage of CO2 in deep geological formations. The results of the application indicate that the strategies speed up CO2 dissolution and immobilisation as the period of time needed to achieve immobilisation in the subsurface formation is enhanced by the surface processes engineering. The immobilised CO2 will remain indefinitely in the storage zone even if the integrity of the caprock is not intact. These innovative engineering technologies provide leakage prevention opportunities which are fundamental to addressing long-term risk management and monitoring issues for CO2 storage sites.
Title: CO2 Leakage Prevention Technologies
Description:
Abstract A central challenge of both scientific and regulatory interest is how to ensure carbon dioxide (CO2) is securely contained within a storage site.
The fate of CO2 in the subsurface describes the range of processes that progressively trap the CO2.
Pure phase CO2 can be trapped within the pore space as (i) residual saturation, and (ii) capillary trapping where the buoyancy forces exerted by a vertical column of CO2 are not sufficient to overcome the capillary forces either within the reservouir rock or to overcome the caprock.
Aside from the physical trapping of free CO2, it can be trapped as an aqueous phase.
An alternative to injection of pure phase CO2 is to inject CO2 saturated waters which are denser than the unsaturated formation waters thus eliminating the problems associated with buoyancy.
Further, in order for the CO2 to be locked away geochemically as mineral trapping, it must first enter an aqueous phase in order for it to be reactive.
Here we explore engineering technologies for enhancing the dissolution of CO2 in formation fluids to mitigate leakage and minimise the risk of CO2 escaping from the storage site.
Conceptual process engineering and design of CO2 injection systems downstream were performed with primary aim of rendering integrated injection strategies suitable for use in enhancing permanent storage of CO2 in deep geological formations.
The results of the application indicate that the strategies speed up CO2 dissolution and immobilisation as the period of time needed to achieve immobilisation in the subsurface formation is enhanced by the surface processes engineering.
The immobilised CO2 will remain indefinitely in the storage zone even if the integrity of the caprock is not intact.
These innovative engineering technologies provide leakage prevention opportunities which are fundamental to addressing long-term risk management and monitoring issues for CO2 storage sites.

Related Results

Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Naturally occurring CO2 reservoirs across the USA are critical natural analogues of long-term CO2 storage in the subsurface over geological timescales and provide valuable insights...
Multiple Water and Sand Leakage Model Tests for Shield Tunnels
Multiple Water and Sand Leakage Model Tests for Shield Tunnels
Water and sand leakage in shield tunnels has become more of a research interest in recent years. On the other hand, accidents involving underground engineering can take many forms ...
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Abstract Numerous CO2 injection pipeline applications have been developed and implemented in the past decades in the UAE and all around the globe. Transporting the C...
Risk-Based Assessment of Leakage Rates from Legacy Wells for CO2 Storage
Risk-Based Assessment of Leakage Rates from Legacy Wells for CO2 Storage
As the world strives to meet global climate targets, carbon capture and storage (CCS) has emerged as a critical technology in reducing greenhouse gas emissions from hard-to-abate s...
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Abstract Recent studies have indicted that more than 40 billion barrels of additional oil can be produced economically with CO2-EOR for a low CO2 capture cost and an...
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Abstract This paper aims to clarify the mechanism and feasibility of carbon dioxide (CO2) injection into carbonate gas reservoirs to enhance recovery and evaluate it...
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Using carbon dioxide for enhance oil recovery (EOR) has attracted a great deal of attention as the world grapples with the twin challenges of improving oil recovery from mature oil...
The Comprehensive Evaluation on the Integral Development of Volcanic Gas Reserves and CO2 Flooding in Jilin Oil Field
The Comprehensive Evaluation on the Integral Development of Volcanic Gas Reserves and CO2 Flooding in Jilin Oil Field
Abstract Pilot-CO2 flooding in Jilin Oil Field has been got a first base in recent years in order to ensure CO2 coming from the development of volcanic gas reserv...

Back to Top