Javascript must be enabled to continue!
Effects of Various Nitrate: Ammonium Ratios on Sweetpotato Growth
View through CrossRef
A study was initiated in the greenhouse to examine the effects of five \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios on sweetpotato growth. Plants were grown from vine cuttings of 15-cm length, planted in 0.15 x 0.15 x 1.2-m growth channels using a closed nutrient film technique system. Nutrient was supplied in a modified half-strength Hoagland's solution with a 1:2:4 N:K ratio. \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios investigated were 100:0, 0:100, 40:60, 60:40, and a control that consisted of a modified half-Hoagland solution with an N:K ratio of 1:2:4 and an \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} of 1:7. Treatments were initiated 30 days after planting (DAP). Sequential plant harvest began 30 DAP and continued at 30-day intervals until final harvest at 150 DAP. Results showed a linear increase in fresh storage root fresh weight until 90 DAP for all treatments. However, from 60 DAP until the end of the growing season, plants grown in a 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} solution consistently produced significantly less storage roots than in all other treatments. While all other treatments showed a decrease in storage root fresh weight after 90 DAP, plants grown in 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} and the control solution continued to increase linearly in storage root production. Storage root dry weight throughout the growing season followed similar trends to that of storage root fresh weight. Data suggest that a nutrient solution containing NO–3as its sole nitrogen source may be adequate for sweetpotato growth. This would make it possible for utilizing a one-way pH control method for nutrient solution.
American Society for Horticultural Science
Title: Effects of Various Nitrate: Ammonium Ratios on Sweetpotato Growth
Description:
A study was initiated in the greenhouse to examine the effects of five \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios on sweetpotato growth.
Plants were grown from vine cuttings of 15-cm length, planted in 0.
15 x 0.
15 x 1.
2-m growth channels using a closed nutrient film technique system.
Nutrient was supplied in a modified half-strength Hoagland's solution with a 1:2:4 N:K ratio.
\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios investigated were 100:0, 0:100, 40:60, 60:40, and a control that consisted of a modified half-Hoagland solution with an N:K ratio of 1:2:4 and an \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} of 1:7.
Treatments were initiated 30 days after planting (DAP).
Sequential plant harvest began 30 DAP and continued at 30-day intervals until final harvest at 150 DAP.
Results showed a linear increase in fresh storage root fresh weight until 90 DAP for all treatments.
However, from 60 DAP until the end of the growing season, plants grown in a 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} solution consistently produced significantly less storage roots than in all other treatments.
While all other treatments showed a decrease in storage root fresh weight after 90 DAP, plants grown in 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} and the control solution continued to increase linearly in storage root production.
Storage root dry weight throughout the growing season followed similar trends to that of storage root fresh weight.
Data suggest that a nutrient solution containing NO–3as its sole nitrogen source may be adequate for sweetpotato growth.
This would make it possible for utilizing a one-way pH control method for nutrient solution.
Related Results
Split application of reduced nitrogen rate improves nitrogen uptake and use efficiency in sweetpotato
Split application of reduced nitrogen rate improves nitrogen uptake and use efficiency in sweetpotato
AbstractSplitting nitrogen (N) application is beneficial for enhancing sweetpotato growth and promoting optimum yields under reduced N rates; however, studies concerning how split ...
Resource recovery through simultaneous denitrification and fermentation in engineered anaerobic systems
Resource recovery through simultaneous denitrification and fermentation in engineered anaerobic systems
[EMBARGOED UNTIL 08/01/2025] Anaerobic digestion (AD) is widely used to process organic waste and is a promising platform for producing bioenergy and biomaterials. However, the fin...
RESPONSE OF HYDROPONICALLY GROWN SWEETPOTATO TO INOCULATION WITH AZOSPIRILLUM
RESPONSE OF HYDROPONICALLY GROWN SWEETPOTATO TO INOCULATION WITH AZOSPIRILLUM
The effect of inoculation with Azospirillum brasilense strain Cd on mineral concentration in sweetpotato, [Ipomeo batatas (L) Lam cv. TI-155] tissue and ionic composition of plant ...
Impact of Various Nitrogenous Fertilizers on Wheat Crop Yield and Growth
Impact of Various Nitrogenous Fertilizers on Wheat Crop Yield and Growth
Nitrogenous fertilizers have increased crop yield, especially for essential crops such as wheat. This study assessed the effects of different nitrogen fertilizers (Urea, Ammonium ...
Reexamining the Role of Ammonium Ions in the Sulfidization, Xanthate-Flotation of Malachite
Reexamining the Role of Ammonium Ions in the Sulfidization, Xanthate-Flotation of Malachite
Ammonium ions have positive effects on the sulfidization flotation of malachite; however, the underlying mechanisms remain poorly understood. In the present work, micro-flotation t...
Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere
Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere
Abstract. Strong atmospheric photochemistry in summer can produce a significant amount of secondary aerosols, which may have a large impact on regional air quality and visibility. ...
The effects of ammonium loading rates and salinity on ammonium treatment of wastewater from super-intensive shrimp farming
The effects of ammonium loading rates and salinity on ammonium treatment of wastewater from super-intensive shrimp farming
Treatment of wastewater from super-intensive shrimp farming (SISF) for discharge or recirculation purposes is currently attracting the attention of managers and researchers. The fi...
Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonium Supports Anaerobic Ammonium Oxidation (Anammox) in an Open-Water Unit Process Wetland
Sulfide-Induced Dissimilatory Nitrate Reduction to Ammonium Supports Anaerobic Ammonium Oxidation (Anammox) in an Open-Water Unit Process Wetland
ABSTRACT
Open-water unit process wetlands host a benthic diatomaceous and bacterial assemblage capable of nitrate removal from treated municipal wastewater w...

