Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Study on the Instability Activation Mechanism and Deformation Law of Surrounding Rock Affected by Water Immersion in Goafs

View through CrossRef
Large-scale goafs are left after coal seam mining. Due to the low-lying terrain, the goaf will be filled and soaked by groundwater, which may lead to instability of the remaining coal pillars in the goaf and cause uneven settlement of the overlying rock. Consequently, there may be overlying rock movement and surface subsidence, which endangers the safety of the building (structure) above the goaf. Considering the strip goaf of Dai Zhuang coal pillar as an example, this study investigated the evolution of instability and deformation of surrounding rocks affected by water immersion using the similar material simulation test method. The results of the study reveal that under the effect of prolonged water immersion in the goaf, the damage to the coal pillar in the strip underwent a stagewise evolution process of several instances of creep damage at the edge of coal pillar followed by overall destabilization damage, and the overburden movement revealed stage characteristics of small step subsidence several times followed by sudden large subsidence. Furthermore, based on Wilson’s coal pillar instability theory, the instability mechanism of the strip coal pillar under the action of water immersion was found to be triggered by the reduced strength of the coal pillar from the effect of water immersion, the continuous creep damage to the strip coal pillar from outside to inside, and the continuous shortening of the elastic zone of the coal pillar until its bearing capacity was lower than the load it was carrying. The research results are expected to serve as theoretical guidance for the study of coal pillar stability and the development and utilization of surface construction above goafs.
Title: Study on the Instability Activation Mechanism and Deformation Law of Surrounding Rock Affected by Water Immersion in Goafs
Description:
Large-scale goafs are left after coal seam mining.
Due to the low-lying terrain, the goaf will be filled and soaked by groundwater, which may lead to instability of the remaining coal pillars in the goaf and cause uneven settlement of the overlying rock.
Consequently, there may be overlying rock movement and surface subsidence, which endangers the safety of the building (structure) above the goaf.
Considering the strip goaf of Dai Zhuang coal pillar as an example, this study investigated the evolution of instability and deformation of surrounding rocks affected by water immersion using the similar material simulation test method.
The results of the study reveal that under the effect of prolonged water immersion in the goaf, the damage to the coal pillar in the strip underwent a stagewise evolution process of several instances of creep damage at the edge of coal pillar followed by overall destabilization damage, and the overburden movement revealed stage characteristics of small step subsidence several times followed by sudden large subsidence.
Furthermore, based on Wilson’s coal pillar instability theory, the instability mechanism of the strip coal pillar under the action of water immersion was found to be triggered by the reduced strength of the coal pillar from the effect of water immersion, the continuous creep damage to the strip coal pillar from outside to inside, and the continuous shortening of the elastic zone of the coal pillar until its bearing capacity was lower than the load it was carrying.
The research results are expected to serve as theoretical guidance for the study of coal pillar stability and the development and utilization of surface construction above goafs.

Related Results

Reliability-based design (RBD) of shallow foundations on rock masses
Reliability-based design (RBD) of shallow foundations on rock masses
[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The reliability-based design (RBD) approach that separately accounts for variability and uncertainty in load(...
Stability Analysis and Disposal Measures for Goafs in Yangla Copper Mine Based on Whole‐Area Concept
Stability Analysis and Disposal Measures for Goafs in Yangla Copper Mine Based on Whole‐Area Concept
Goaf stability is a prominent research topic in open stope mining in underground mines. This research topic is crucial for improving mine production safety and long‐term goaf stabi...
Evaluation and Deformation Control Study on the Bias Pressure of Layered Rock Tunnels
Evaluation and Deformation Control Study on the Bias Pressure of Layered Rock Tunnels
In the process of tunnel construction, the bias of layered rock mass tunnels has always been a prominent problem that troubles the construction and safe operation of tunnels. In th...
Study on Large Deformation Prediction and Control Technology of Carbonaceous Slate Tunnel in Lixiang Railway
Study on Large Deformation Prediction and Control Technology of Carbonaceous Slate Tunnel in Lixiang Railway
The construction of railway tunnel in carbonaceous slate environment is easy to cause rock mass disturbance, which leads to large deformation of surrounding rock and then threatens...
Calculation of Rock Pressure in Loess Tunnels Based on Limit Equilibrium Theory and Analysis of Influencing Factors
Calculation of Rock Pressure in Loess Tunnels Based on Limit Equilibrium Theory and Analysis of Influencing Factors
The research on the calculation method of tunnel envelope pressure is a key issue in the design of tunnel engineering support structure. Based on the limit equilibrium theory, this...
Drilling-Induced Fractures in Borehole Walls
Drilling-Induced Fractures in Borehole Walls
Summary Drilling-induced fractures in borehole walls are investigated by ring tests, flow tests, and microscopic studies. Each drilling method producescharacteris...
Autonomy on Trial
Autonomy on Trial
Photo by CHUTTERSNAP on Unsplash Abstract This paper critically examines how US bioethics and health law conceptualize patient autonomy, contrasting the rights-based, individualist...

Back to Top