Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

STUDI KLASIFIKASI TOPIK BERITA DENGAN ALGORITMA MACHINE LEARNING

View through CrossRef
As a result of the use and access of social media, it also has an impact on increasing the amount of data and information, especially text data. Text has become one of the most natural forms of data that is stored, so that the field of text mining is believed to be an advanced field of data mining. Facts that emerge from research studies that have been conducted show that 80% of company information is presented in text documents. Text mining is a multidisciplinary field, involving information retrieval, text analysis, information extraction, and clustering. The text mining classification method is one technique that can be used to carry out classification. Text classification specifically works to group text documents based on categories, and within the scope of news datasets, categories are generally divided into politics, economics, military, sports and others. Statistical methods are one of the most frequently applied methods in text emotion classification. As a method in statistics, Naive Bayes is a classification algorithm that is easy to understand in text classification. Apart from that, Naïve Bayes has good classification effects and performance for processing large-scale data. The conclusion of this research is, Naïve Bayes gets an accuracy value of 77.78%. Random Forest gets an accuracy of 70.1%. KNN gets an accuracy of 24.88% and SVM gets an accuracy value of 80.60%. Meanwhile, the respective running times are Naïve Bayes 0.046 seconds, Random Forest 150 seconds, KNN 15 seconds, and SVM 0.43 seconds.
Title: STUDI KLASIFIKASI TOPIK BERITA DENGAN ALGORITMA MACHINE LEARNING
Description:
As a result of the use and access of social media, it also has an impact on increasing the amount of data and information, especially text data.
Text has become one of the most natural forms of data that is stored, so that the field of text mining is believed to be an advanced field of data mining.
Facts that emerge from research studies that have been conducted show that 80% of company information is presented in text documents.
Text mining is a multidisciplinary field, involving information retrieval, text analysis, information extraction, and clustering.
The text mining classification method is one technique that can be used to carry out classification.
Text classification specifically works to group text documents based on categories, and within the scope of news datasets, categories are generally divided into politics, economics, military, sports and others.
Statistical methods are one of the most frequently applied methods in text emotion classification.
As a method in statistics, Naive Bayes is a classification algorithm that is easy to understand in text classification.
Apart from that, Naïve Bayes has good classification effects and performance for processing large-scale data.
The conclusion of this research is, Naïve Bayes gets an accuracy value of 77.
78%.
Random Forest gets an accuracy of 70.
1%.
KNN gets an accuracy of 24.
88% and SVM gets an accuracy value of 80.
60%.
Meanwhile, the respective running times are Naïve Bayes 0.
046 seconds, Random Forest 150 seconds, KNN 15 seconds, and SVM 0.
43 seconds.

Related Results

Implementasi Algoritma Naïve Bayes Clasifier untuk Mengelompokkan Naskah Berita Pendidikan dan berita Covid-19
Implementasi Algoritma Naïve Bayes Clasifier untuk Mengelompokkan Naskah Berita Pendidikan dan berita Covid-19
Seiring dengan perkembangan jaman, banyak lembaga penyaluran informasi yang pada awalnya menyampaikan berita melalui media cetak atau media elektronik, seperti koran dan televisi, ...
ARTIKEL ALGORITMA PEMROGRAMAN SERI MINTA UBA HASIBUAN
ARTIKEL ALGORITMA PEMROGRAMAN SERI MINTA UBA HASIBUAN
Algoritma merupakan akar dari sebuah sistem yang terbentuk dalam dunia pemrograman.Melalui serangkaian cara yang masuk akal dan teratur, sebuah algoritma dapat menyelesaikan suatu ...
Klasifikasi Topik Pembahasan Mahasiswa ITS dalam Bermedia Sosial Menggunakan Latent Dirichlet Allocation
Klasifikasi Topik Pembahasan Mahasiswa ITS dalam Bermedia Sosial Menggunakan Latent Dirichlet Allocation
Media sosial sudah menjadi bagian dari kehidupan sehari-hari masyarakat segala kalangan di era digital ini. Di tengah maraknya penggunaan media sosial ini mahasiswa Institut Teknol...
Framing Situs Berita Daring Lokal pada Pemilihan Gubernur Bengkulu 2020
Framing Situs Berita Daring Lokal pada Pemilihan Gubernur Bengkulu 2020
Situs berita daring lokal idealnya bersikap independen, independesinya harus terwujud dalam segala hal, terutama saat kontestasi pesta demokrasi. Pada 2020, Pemilihan Gubernur di B...
Perbandingan Algoritma Boruvka Dan Algoritma Sollin Pada Optimasi Kebutuhan Kabel Fiber Optik Universitas Bengkulu
Perbandingan Algoritma Boruvka Dan Algoritma Sollin Pada Optimasi Kebutuhan Kabel Fiber Optik Universitas Bengkulu
Optimasi adalah hal penting dalam suatu algoritma. Ini dapat menghemat kebutuhan dalam suatu kegiatan. Pada Minimum Spanning Tree, yang ingin dicapai adalah bagaimana semua vertexs...
Hybrid Algoritma Vgg16-Net Dengan Support Vector Machine Untuk Klasifikasi Jenis Buah dan sayuran
Hybrid Algoritma Vgg16-Net Dengan Support Vector Machine Untuk Klasifikasi Jenis Buah dan sayuran
Arsitektur deep learning VGG16 terbukti efektif dalam hal melakukan klasifikasi citra pada dataset ImageNet, akan tetapi memiliki keterbatasan dalam jumlah parameter sangat banyak ...
Klasifikasi Emosi Tokoh Nathan dalam Novel Dear Nathan Karya Erisca Febriani: Kajian Perspektif David Krech
Klasifikasi Emosi Tokoh Nathan dalam Novel Dear Nathan Karya Erisca Febriani: Kajian Perspektif David Krech
Abstrak: Masalah yang diangkat pada penelitian ini adalah bagaimanakah bentuk klasifikasi emosi tokoh Nathan dalam novel Dear Nathan karya Erisca Febriani: kajian perspektif David ...

Back to Top