Javascript must be enabled to continue!
Focusing effect of channel target on ultra-intense laser-accelerated proton beam
View through CrossRef
In laser proton acceleration, the inevitable transverse divergence of proton beam restricts its applications in many fields. In this paper, a structured target with a properly wide channel attached to the backside of a foil is proposed, and the interaction of the ultra-short laser pulse with the structured channel target is investigated via two-dimensional particle-in-cell simulation. The simulations show that for the structured channel target, electrons on the front surface are heated by the incident high-intensity laser pulse and then the induced hot electrons transport through the target to the rear surface, building an electrostatic field in the longitudinal direction to accelerate the protons to high energies as the typical target normal sheath acceleration scheme. In the case of the structured channel target, the simulation results indicate that a strong transverse electrostatic field is created by charge separation along the inner surface of the channel while hot electrons propagate along the channel side walls under the guidance of self-induced magnetic and electric fields, which can focus the emitted proton beam transversely, leading to a smaller divergence. By comparing the channel target case with the traditional foil target case under the same conditions, it is found that the divergence angle of the proton beam from the channel target is reduced significantly. Protons with energies above 3 MeV have a divergence angle of 5.3° at the time of 500 fs in the channel target case, while the value is 17.1° in the foil case for a laser intensity of 5.4×1019 W/cm2. Additionally, the effect of the channel target on the maximum proton energy is considered. The simulation results of the energy spectra reveal that the maximum proton cut-off energy of the channel target is about 1 MeV lower than that of the foil target. This small energy loss is due to the refluxing of the cold electrons on the channel walls, which suppresses the increasing of the sheath potential. Therefore, it is concluded that the focusing electric field can work on the proton beam effectively, leading to a better collimation with conserving the proton energy by using the proposed channel target. Especially when the inner diameter of the channel target is comparable to the laser focal spot size, the proton beam can be confined to a small divergence, and a relatively higher laser energy conversion efficiency can be ensured as well.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Focusing effect of channel target on ultra-intense laser-accelerated proton beam
Description:
In laser proton acceleration, the inevitable transverse divergence of proton beam restricts its applications in many fields.
In this paper, a structured target with a properly wide channel attached to the backside of a foil is proposed, and the interaction of the ultra-short laser pulse with the structured channel target is investigated via two-dimensional particle-in-cell simulation.
The simulations show that for the structured channel target, electrons on the front surface are heated by the incident high-intensity laser pulse and then the induced hot electrons transport through the target to the rear surface, building an electrostatic field in the longitudinal direction to accelerate the protons to high energies as the typical target normal sheath acceleration scheme.
In the case of the structured channel target, the simulation results indicate that a strong transverse electrostatic field is created by charge separation along the inner surface of the channel while hot electrons propagate along the channel side walls under the guidance of self-induced magnetic and electric fields, which can focus the emitted proton beam transversely, leading to a smaller divergence.
By comparing the channel target case with the traditional foil target case under the same conditions, it is found that the divergence angle of the proton beam from the channel target is reduced significantly.
Protons with energies above 3 MeV have a divergence angle of 5.
3° at the time of 500 fs in the channel target case, while the value is 17.
1° in the foil case for a laser intensity of 5.
4×1019 W/cm2.
Additionally, the effect of the channel target on the maximum proton energy is considered.
The simulation results of the energy spectra reveal that the maximum proton cut-off energy of the channel target is about 1 MeV lower than that of the foil target.
This small energy loss is due to the refluxing of the cold electrons on the channel walls, which suppresses the increasing of the sheath potential.
Therefore, it is concluded that the focusing electric field can work on the proton beam effectively, leading to a better collimation with conserving the proton energy by using the proposed channel target.
Especially when the inner diameter of the channel target is comparable to the laser focal spot size, the proton beam can be confined to a small divergence, and a relatively higher laser energy conversion efficiency can be ensured as well.
Related Results
En skvatmølle i Ljørring
En skvatmølle i Ljørring
A Horizontal Mill at Ljørring, Jutland.Horizontal water-mills have been in use in Jutland since the beginning of the Christian era 2). But the one here described shows so close a c...
Intense-Proton-Beam Transport through an Insulator Beam Guide
Intense-Proton-Beam Transport through an Insulator Beam Guide
In this paper we study intense-proton-beam transport through an insulator guide. In our previous papers [Jpn. J. Appl. Phys. 34 (1995) L520, Jpn. J. Appl. Phys. 35 (1996) L112...
SU‐E‐T‐470: Beam Performance of the Radiance 330 Proton Therapy System
SU‐E‐T‐470: Beam Performance of the Radiance 330 Proton Therapy System
Purpose:The ProTom Radiance 330 proton radiotherapy system is a fully functional, compact proton radiotherapy system that provides advanced proton delivery capabilities. It support...
TH‐E‐ValA‐02: Simultaneous Multi‐Pencil Fan‐Beam‐Based Intensity‐Modulated Proton Therapy.
TH‐E‐ValA‐02: Simultaneous Multi‐Pencil Fan‐Beam‐Based Intensity‐Modulated Proton Therapy.
Purpose: Intensity‐modulated proton therapy (IMPT) will improve the conformality of proton radiotherapy while preserving target homogeneity and low integral dose characteristics. I...
Laser show safety for smaller shows: The ILDA category a laser show standard
Laser show safety for smaller shows: The ILDA category a laser show standard
The International Laser Display Association has developed a “Category A Standard” for laser shows that ILDA considers to be generally recognized as safe under the conditions of the...
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
Double resonant sum-frequency generation in an external-cavity under high-efficiency frequency conversion
In recent years, more than 90% of the signal laser power can be up-converted based on the high-efficiency double resonant external cavity sum-frequency generation (SFG), especially...
Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin
Unraveling the mechanism of proton translocation in the extracellular half-channel of bacteriorhodopsin
AbstractBacteriorhodopsin, a light activated protein that creates a proton gradient in halobacteria, has long served as a simple model of proton pumps. Within bacteriorhodopsin, se...
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
Development of a high intensity Mid-Ir OPCPA pumped by a HO:YLF amplifier
The continuous development of laser sources delivering ultra-short light pulses underpins much of the current progress in experimental science, particularly in the domain of physic...

