Javascript must be enabled to continue!
Short-term CFTR inhibition reduces islet area in C57BL/6 mice
View through CrossRef
AbstractCystic fibrosis-related diabetes (CFRD) worsens CF lung disease leading to early mortality. Loss of beta cell area, even without overt diabetes or pancreatitis is consistently observed. We investigated whether short-term CFTR inhibition was sufficient to impact islet morphology and function in otherwise healthy mice. CFTR was inhibited in C57BL/6 mice via 8-day intraperitoneal injection of CFTRinh172. Animals had a 7-day washout period before measures of hormone concentration or islet function were performed. Short-term CFTR inhibition increased blood glucose concentrations over the course of the study. However, glucose tolerance remained normal without insulin resistance. CFTR inhibition caused marked reductions in islet size and in beta cell and non-beta cell area within the islet, which resulted from loss of islet cell size rather than islet cell number. Significant reductions in plasma insulin concentrations and pancreatic insulin content were also observed in CFTR-inhibited animals. Temporary CFTR inhibition had little long-term impact on glucose-stimulated, or GLP-1 potentiated insulin secretion. CFTR inhibition has a rapid impact on islet area and insulin concentrations. However, islet cell number is maintained and insulin secretion is unaffected suggesting that early administration of therapies aimed at sustaining beta cell mass may be useful in slowing the onset of CFRD.
Springer Science and Business Media LLC
Title: Short-term CFTR inhibition reduces islet area in C57BL/6 mice
Description:
AbstractCystic fibrosis-related diabetes (CFRD) worsens CF lung disease leading to early mortality.
Loss of beta cell area, even without overt diabetes or pancreatitis is consistently observed.
We investigated whether short-term CFTR inhibition was sufficient to impact islet morphology and function in otherwise healthy mice.
CFTR was inhibited in C57BL/6 mice via 8-day intraperitoneal injection of CFTRinh172.
Animals had a 7-day washout period before measures of hormone concentration or islet function were performed.
Short-term CFTR inhibition increased blood glucose concentrations over the course of the study.
However, glucose tolerance remained normal without insulin resistance.
CFTR inhibition caused marked reductions in islet size and in beta cell and non-beta cell area within the islet, which resulted from loss of islet cell size rather than islet cell number.
Significant reductions in plasma insulin concentrations and pancreatic insulin content were also observed in CFTR-inhibited animals.
Temporary CFTR inhibition had little long-term impact on glucose-stimulated, or GLP-1 potentiated insulin secretion.
CFTR inhibition has a rapid impact on islet area and insulin concentrations.
However, islet cell number is maintained and insulin secretion is unaffected suggesting that early administration of therapies aimed at sustaining beta cell mass may be useful in slowing the onset of CFRD.
Related Results
INTEGRATING GENOMIC AND FUNCTIONAL TESTING TO IMPROVE CFTR MODULATOR RESPONSE PREDICTION IN CHILDREN WITH CYSTIC FIBROSIS
INTEGRATING GENOMIC AND FUNCTIONAL TESTING TO IMPROVE CFTR MODULATOR RESPONSE PREDICTION IN CHILDREN WITH CYSTIC FIBROSIS
ABSTRACT
Background
CFTR modulators have transformed cystic fibrosis (CF) treatment, but individual responses vary even among patients wi...
S945L-CFTR molecular dynamics, functional characterization and tezacaftor/ivacaftor efficacy in vivo and in vitro in matched pediatric patient-derived cell models
S945L-CFTR molecular dynamics, functional characterization and tezacaftor/ivacaftor efficacy in vivo and in vitro in matched pediatric patient-derived cell models
Cystic Fibrosis (CF) results from over 400 different disease-causing mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. These CFTR mutations lead to numerous defe...
A novel CFTR-AQP7 protein complex regulates glycerol transport and motility of human sperm
A novel CFTR-AQP7 protein complex regulates glycerol transport and motility of human sperm
Abstract
STUDY QUESTION
Does the interaction between CFTR and AQP7 in human spermatozoa play a role in the molecular mech...
Clinical pharmacology of CFTR modulators
Clinical pharmacology of CFTR modulators
With the development of cystic fibrosis transmembrane receptor (CFTR) modulating drugs, the landscape in cystic fibrosis (CF) care has changed dramatically. These drugs enable the ...
Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish
Cftr controls lumen expansion and function of Kupffer’s vesicle in zebrafish
Regulated fluid secretion is crucial for the function of most organs. In vertebrates, the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) is a master re...
Progressive Islet Graft Failure Occurs Significantly Earlier in Autoantibody-Positive Than in Autoantibody-Negative IDDM Recipients of Intrahepatic Islet Allografts
Progressive Islet Graft Failure Occurs Significantly Earlier in Autoantibody-Positive Than in Autoantibody-Negative IDDM Recipients of Intrahepatic Islet Allografts
Alloimmunity has been uncovered to be a cause of graft loss representing a major barrier for clinical islet transplantation, and several studies are designed to evaluate new strate...
Alternative Chloride Channels are Increased in the CFTR‐/‐ Rat Airway
Alternative Chloride Channels are Increased in the CFTR‐/‐ Rat Airway
Cystic fibrosis (CF) is a genetic disease caused by absence of the cystic fibrosis transmembrane conductance regulator (CFTR) affecting multiple organs. CFTR is an anion transporte...
Exosomal-microRNAs Improve Islet Cell Survival and Function In Islet
Transplantation
Exosomal-microRNAs Improve Islet Cell Survival and Function In Islet
Transplantation
Abstract:
Exosomal-microRNAs (Exo-miRNAs) are key regulators of islet cell function, including insulin
expression, processing, and secretion. Exo-miRNAs have a significant impact o...


