Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Arbuscular mycorrhizal fungi contribute to wheat yield in an agroforestry system with different tree ages

View through CrossRef
Intercropping achieved through agroforestry is increasingly being recognized as a sustainable form of land use. In agroforestry, the roots of trees and crops are intermingled, and their interactions and the production of exudates alter the soil environment and soil microbial community. Although tree–crop interactions vary depending on the stand age of the trees, how stand age affects beneficial microorganisms, including arbuscular mycorrhizal fungi (AMF), and whether changes in soil microorganisms feed back on crop growth in agroforestry systems are unknown. We therefore conducted a long-term field study to compare changes in the soil microbial and AMF communities in a jujube/wheat agroforestry system containing trees of different stand ages: 3-year-old jujube, 8-year-old jujube, and 13-year-old jujube. Our results showed that by changing soil moisture and available phosphorus content, the stand age of the trees had a significant effect on the soil microbial and AMF communities. Soil moisture altered the composition of soil bacteria, in particular the proportions of Gram-positive and Gram-negative species, and available phosphorus had significant effects on the AMF community. A network analysis showed that older stands of trees reduced both AMF diversity and network complexity. An ordinary least squares regression analysis indicated that AMF diversity, network complexity, and stability contributed to wheat yield. Finally, structural equation modeling showed that changes in edaphic factors induced by tree age brought about significant variation in the soil microbial and AMF communities, in turn, affecting crop growth. Our study highlights the crucial roles of soil microorganisms, in particular AMF, in supporting plant growth in agroforestry systems as well as the need to consider stand age in the establishment of these systems.
Title: Arbuscular mycorrhizal fungi contribute to wheat yield in an agroforestry system with different tree ages
Description:
Intercropping achieved through agroforestry is increasingly being recognized as a sustainable form of land use.
In agroforestry, the roots of trees and crops are intermingled, and their interactions and the production of exudates alter the soil environment and soil microbial community.
Although tree–crop interactions vary depending on the stand age of the trees, how stand age affects beneficial microorganisms, including arbuscular mycorrhizal fungi (AMF), and whether changes in soil microorganisms feed back on crop growth in agroforestry systems are unknown.
We therefore conducted a long-term field study to compare changes in the soil microbial and AMF communities in a jujube/wheat agroforestry system containing trees of different stand ages: 3-year-old jujube, 8-year-old jujube, and 13-year-old jujube.
Our results showed that by changing soil moisture and available phosphorus content, the stand age of the trees had a significant effect on the soil microbial and AMF communities.
Soil moisture altered the composition of soil bacteria, in particular the proportions of Gram-positive and Gram-negative species, and available phosphorus had significant effects on the AMF community.
A network analysis showed that older stands of trees reduced both AMF diversity and network complexity.
An ordinary least squares regression analysis indicated that AMF diversity, network complexity, and stability contributed to wheat yield.
Finally, structural equation modeling showed that changes in edaphic factors induced by tree age brought about significant variation in the soil microbial and AMF communities, in turn, affecting crop growth.
Our study highlights the crucial roles of soil microorganisms, in particular AMF, in supporting plant growth in agroforestry systems as well as the need to consider stand age in the establishment of these systems.

Related Results

Environmental Effects and Their Impact on Yield in Adjacent Experimental Plots of High-stem and Short-Stem Wheat Varieties
Environmental Effects and Their Impact on Yield in Adjacent Experimental Plots of High-stem and Short-Stem Wheat Varieties
Abstract Xinhuamai 818 was used as the experimental material for high-stem wheat varieties, HHH was used as the control plot for high-stem wheat varieties (one letter repre...
Environmental Effects and Their impact on Yield in Adjacent Experimental Plots of High and Short Stem Wheat Varieties
Environmental Effects and Their impact on Yield in Adjacent Experimental Plots of High and Short Stem Wheat Varieties
Abstract Using Xinhuamai818 as the experimental material for high stem wheat varieties, HHH as the control plot for high stem wheat varieties(One letter represents an exper...
Plant–soil feedbacks between arbuscular- and ecto-mycorrhizal communities
Plant–soil feedbacks between arbuscular- and ecto-mycorrhizal communities
AbstractSoil microbiomes of adult trees exert species-specific effects on the survival and growth of seedlings1-6, yet empirical evidence that such plant–soil microbiome interactio...
Potential Nitrification and Nitrogen Mineral of Soil in Coffee Agroforestry System with Various Shading Trees
Potential Nitrification and Nitrogen Mineral of Soil in Coffee Agroforestry System with Various Shading Trees
The role of shading trees in coffee farms has been well understood to establish suitable condition for the growth of coffee trees, on the other hand their role in nitrogen cycle in...
Mycorrhizal Fungi and Sustainable Agriculture
Mycorrhizal Fungi and Sustainable Agriculture
The 20thcentury witnessed an augmentation in agricultural production, mainly through the progress and use of pesticides, fertilizers containing nitrogen and phosphorus, and develop...
Arbuscular mycorrhizal fungi in wheat grown in copper contaminated soil
Arbuscular mycorrhizal fungi in wheat grown in copper contaminated soil
At high soil concentrations, copper (Cu) is toxic to plant development. Symbiosis carried out between microorganisms and plant species are alternatives to minimize plant toxicity i...
Mycorrhizal fungi arbuscular in forage grasses cultivated in Cerrado soil
Mycorrhizal fungi arbuscular in forage grasses cultivated in Cerrado soil
AbstractThe Cerrado is one of the most important regions for agricultural development in the world and is the main productive breadbasket of the Americas. One of the main agricultu...
Assessment of agroforestry practices in Buno Bedele and Ilu Abba Bora zone of Oromia region, Ethiopia
Assessment of agroforestry practices in Buno Bedele and Ilu Abba Bora zone of Oromia region, Ethiopia
Abstract Agroforestry practices are considered as one of the major source of food and income to meet the needs and the wellbeing of the rural community. This study was cond...

Back to Top