Javascript must be enabled to continue!
Agricultural land use weakens the relationship between biodiversity and ecosystem functioning
View through CrossRef
Leaf litter decomposition is a significant ecosystem process for streams' energy provisioning, while species‐specific decomposition rates often form a continuum from slow to fast decomposing species allowing for resources' availability to stream consumers over a longer time period after leaf fall. Leaf litter mixtures in streams typically comprise leaf species varying in their traits, allowing for litter diversity effects on decomposition. At the same time, agricultural land use, habitat characteristics, water quality and invertebrate composition modulate leaf litter decomposition. To identify leaf litter diversity effects and disentangle the roles of agricultural intensity, habitat characteristics, water quality and invertebrate composition for leaf litter processing in streams, we quantified leaf litter decomposition of three leaf species covering a gradient from slow to fast decomposing species, tested either individually or as a three‐species mixture. The study was conducted over 21 days across 18 streams with a gradient of agricultural intensity (percent agricultural land use) in their catchments. We found leaf litter diversity effects in terms of complementarity under low to intermediate agricultural intensity, given that slow decomposing leaf species decomposed almost twice as fast in the three‐species mixture compared to the observations on individual leaf species. This leaf litter diversity effect decreased with increasing agricultural intensity, suggesting that agriculture weakens the biodiversity–ecosystem functioning relationship. However, pathways by which agriculture affected decomposition differed between single‐species and mixed‐species scenarios. For the single‐species scenario, negative effects of agriculture appeared to be mediated through effects on the proportion of sensitive detritivore species and altered habitat characteristics. For the mixed‐species scenario, altered water quality negatively affected the proportion of sensitive detritivore species, in turn reducing the diversity effect on functioning. Our results suggest that the weakened biodiversity–ecosystem functioning relationship under increasing agricultural intensity might be a significant factor threatening carbon cycling and food web integrity in streams.
Title: Agricultural land use weakens the relationship between biodiversity and ecosystem functioning
Description:
Leaf litter decomposition is a significant ecosystem process for streams' energy provisioning, while species‐specific decomposition rates often form a continuum from slow to fast decomposing species allowing for resources' availability to stream consumers over a longer time period after leaf fall.
Leaf litter mixtures in streams typically comprise leaf species varying in their traits, allowing for litter diversity effects on decomposition.
At the same time, agricultural land use, habitat characteristics, water quality and invertebrate composition modulate leaf litter decomposition.
To identify leaf litter diversity effects and disentangle the roles of agricultural intensity, habitat characteristics, water quality and invertebrate composition for leaf litter processing in streams, we quantified leaf litter decomposition of three leaf species covering a gradient from slow to fast decomposing species, tested either individually or as a three‐species mixture.
The study was conducted over 21 days across 18 streams with a gradient of agricultural intensity (percent agricultural land use) in their catchments.
We found leaf litter diversity effects in terms of complementarity under low to intermediate agricultural intensity, given that slow decomposing leaf species decomposed almost twice as fast in the three‐species mixture compared to the observations on individual leaf species.
This leaf litter diversity effect decreased with increasing agricultural intensity, suggesting that agriculture weakens the biodiversity–ecosystem functioning relationship.
However, pathways by which agriculture affected decomposition differed between single‐species and mixed‐species scenarios.
For the single‐species scenario, negative effects of agriculture appeared to be mediated through effects on the proportion of sensitive detritivore species and altered habitat characteristics.
For the mixed‐species scenario, altered water quality negatively affected the proportion of sensitive detritivore species, in turn reducing the diversity effect on functioning.
Our results suggest that the weakened biodiversity–ecosystem functioning relationship under increasing agricultural intensity might be a significant factor threatening carbon cycling and food web integrity in streams.
Related Results
Balancing Societal Demands for Agricultural Land
Balancing Societal Demands for Agricultural Land
With an increasing global population and the effects of climate change and
biodiversity loss intensifying, society faces many challenges in reconciling
...
LAND USE OPTIMIZATION IN UKRAINE AT THE STAGE OF LAND MARKET FORMATION
LAND USE OPTIMIZATION IN UKRAINE AT THE STAGE OF LAND MARKET FORMATION
In the context of the reform of the sale of agricultural land, the priority is to optimize land use, which is to find a balance of land that would meet their environmental, economi...
Valuation of Ecosystem Services, Karnataka State, India
Valuation of Ecosystem Services, Karnataka State, India
Humans depend on the environment for their basic needs, such as food, fuel, minerals, water, air, etc. Burgeoning unplanned development activities to cater to the demands of the in...
The business case for investing in biodiversity data
The business case for investing in biodiversity data
1. The private sector is increasingly aware of its dependence on biodiversity and the financial risks and opportunities involved. This has generated a lot of demand for investing i...
Land Degradation Assessment in Pakistan based on LU and VCF
Land Degradation Assessment in Pakistan based on LU and VCF
Abstract
Land degradation is a global environmental issue receiving much attention currently. According to the definition and interpretation of land degradation by relevant...
Analysis of the Impact of Agricultural Products Import Trade on Agricultural Carbon Productivity: Empirical Evidence from China
Analysis of the Impact of Agricultural Products Import Trade on Agricultural Carbon Productivity: Empirical Evidence from China
Abstract
To realize the goal of “dual carbon”, China urgently needs to seek the path of low-carbon agricultural development. The existing agricultural trade deficit in Chin...
The impact of agricultural production agglomeration on agricultural economic resilience: based on spatial spillover and threshold effect test
The impact of agricultural production agglomeration on agricultural economic resilience: based on spatial spillover and threshold effect test
This study focuses on the role of agricultural production agglomeration in strengthening agricultural economic resilience, exploring the threshold effect of agricultural technologi...
Modelling of Unauthorized Land Use Sprawl using High Resolution Data and GIS Based-Cellular Automata
Modelling of Unauthorized Land Use Sprawl using High Resolution Data and GIS Based-Cellular Automata
This study uses Cellular Automata (CA) model, Geography Information System (GIS) and remote sensing data to produce trend and sprawl pattern simulation of un-authorized land use in...


