Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Loss Generation in Transonic Turbine Blading

View through CrossRef
The measured loss characteristic in a high-speed cascade tunnel of two turbine blades of different designs showed distinctly different trend with exit Mach number ranging from 0.8 to 1.4. Assessments using steady RANS computation of the flow in the two turbine blades, complemented with control volume analyses and loss modelling, elucidate why the measured loss characteristic looks the way it is. The loss model categorizes the total loss in terms of boundary layer loss, trailing edge loss and shock loss; it yields results in good agreement with the experimental data as well as steady RANS computed results. Thus RANS is an adequate tool for determining the loss variations with exit isentropic Mach number and the loss model serves as an effective tool to interpret both the computational and experimental data. The measured loss plateau in Blade 1 for exit Mach number of 1 to 1.4 is due to a balance between a decrease of blade surface boundary layer loss and an increase in the attendant shock loss with Mach number; this plateau is absent in Blade 2 due to a greater rate in shock loss increase than the corresponding decrease in boundary layer loss. For exit Mach number from 0.85 to 1, the higher loss associated with shock system in Blade 1 is due to the larger divergent angle downstream of the throat than that in Blade 2. However when exit Mach number is between 1.00 and 1.30, Blade 2 has higher shock loss. For exit Mach number above around 1.4, the shock loss for the two blades is similar as the flow downstream of the throat is completely supersonic. In the transonic to supersonic flow regime, the turbine design can be tailored to yield a shock pattern the loss of which can be mitigated in near equal amount of that from the boundary layer with increasing exit Mach number, hence yielding a loss plateau in transonic-supersonic regime.
Title: Loss Generation in Transonic Turbine Blading
Description:
The measured loss characteristic in a high-speed cascade tunnel of two turbine blades of different designs showed distinctly different trend with exit Mach number ranging from 0.
8 to 1.
4.
Assessments using steady RANS computation of the flow in the two turbine blades, complemented with control volume analyses and loss modelling, elucidate why the measured loss characteristic looks the way it is.
The loss model categorizes the total loss in terms of boundary layer loss, trailing edge loss and shock loss; it yields results in good agreement with the experimental data as well as steady RANS computed results.
Thus RANS is an adequate tool for determining the loss variations with exit isentropic Mach number and the loss model serves as an effective tool to interpret both the computational and experimental data.
The measured loss plateau in Blade 1 for exit Mach number of 1 to 1.
4 is due to a balance between a decrease of blade surface boundary layer loss and an increase in the attendant shock loss with Mach number; this plateau is absent in Blade 2 due to a greater rate in shock loss increase than the corresponding decrease in boundary layer loss.
For exit Mach number from 0.
85 to 1, the higher loss associated with shock system in Blade 1 is due to the larger divergent angle downstream of the throat than that in Blade 2.
However when exit Mach number is between 1.
00 and 1.
30, Blade 2 has higher shock loss.
For exit Mach number above around 1.
4, the shock loss for the two blades is similar as the flow downstream of the throat is completely supersonic.
In the transonic to supersonic flow regime, the turbine design can be tailored to yield a shock pattern the loss of which can be mitigated in near equal amount of that from the boundary layer with increasing exit Mach number, hence yielding a loss plateau in transonic-supersonic regime.

Related Results

Comprehensive Calculation And Performance Analysis Of Gas Turbine Reversible Power Turbine
Comprehensive Calculation And Performance Analysis Of Gas Turbine Reversible Power Turbine
Gas turbine technology trends to be maturing now, but the problem of which not being able to reverse directly remains resolve. In the field of marine, most ships reverse by adjusta...
Influence of impurities contained in fuel and air on sulfide corrosion of turbine blades of the gas turbine engine
Influence of impurities contained in fuel and air on sulfide corrosion of turbine blades of the gas turbine engine
In the process of improving gas turbine engines (GTE), increasing the resource and efficiency, there is a constant increase in temperature and pressure of the working fluid. Turbin...
Hybrid Offshore Power Generation
Hybrid Offshore Power Generation
Abstract Amid 2020 challenging business environments due to COVID-19 pandemic and strong global push towards transition to cleaner energy, PETRONAS has declared its'...
SIMULATION AND PIV EXPERIMENT OF THE DUCTED WATER CURRENT TURBINE AND EXTREMELY LOW HEAD HELICAL TURBINE
SIMULATION AND PIV EXPERIMENT OF THE DUCTED WATER CURRENT TURBINE AND EXTREMELY LOW HEAD HELICAL TURBINE
This research introduced for the Ducted Water Current Turbine Triple Helix with very low head less than 2m and water current at river or in the ocean, economical ecological use for...
Reduced-Order Through-Flow Design Code for Highly Loaded, Cooled Axial Turbines
Reduced-Order Through-Flow Design Code for Highly Loaded, Cooled Axial Turbines
The development of advanced computational fluid dynamic codes for turbine design does not substitute the importance of mean-line codes. Turbine design involves mean-line design, th...
Transonic aeroelasticity design method with application to a wing
Transonic aeroelasticity design method with application to a wing
Abstract The transonic region is the most serious aeroelastic stability problem due to the existence of nonlinear factors such as shock waves, and it has been troubl...
Transonic Relief in Fans and Compressors
Transonic Relief in Fans and Compressors
Abstract Every supersonic fan or compressor blade row has a streamtube, the ‘sonic streamtube’, which operates with a blade relative inlet Mach number of one. A key ...
Unsteady Effect in a Nozzled Turbocharger Turbine
Unsteady Effect in a Nozzled Turbocharger Turbine
The unsteady behavior of a nozzled turbocharger turbine under pulsating flow conditions has been studied experimentally in a cold flow test facility that replicates engine pulses. ...

Back to Top