Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Numerical Investigation of Equilibrium and Kinetic Aspects for Hydrogenation of CO2

View through CrossRef
Even if huge efforts are made to push alternative mobility concepts, such as electric cars and fuel-cell-powered cars, the significance and use of liquid fuels is anticipated to stay high during the 2030s. Biomethane and synthetic natural gas (SNG) might play a major role in this context, as they are raw material for chemical industry that is easy to be stored and distribute via existing infrastructure, and are a versatile energy carrier for power generation and mobile applications. Since biomethane and synthetic natural gas are suitable for power generation and for mobile applications, they can therefore replace natural gas without any infrastructure changes, thus playing a major role.In this paper, we aim to comprehend the direct production of synthetic natural gas from CO2 and H2 in a Sabatier process based on a thermodynamic analysis as well as a multi-step kinetic approach. For this purpose, we thoroughly discuss CO2 methanation to control emissions in order to maximize the methane formation along with minimizing the CO formation and to understand the complex methanation process. We consider an equilibrium and kinetic modeling study on the NiO-SiO2 catalyst for methanation focusing on CO2-derived SNG. The thermodynamic analysis of CO2 hydrogenation is preformed to define the optimal process parameters followed by the kinetic simulations for catalyst development. The investigation presented in this paper can also be used for developing machine learning algorithms for methanation processes.
Title: Numerical Investigation of Equilibrium and Kinetic Aspects for Hydrogenation of CO2
Description:
Even if huge efforts are made to push alternative mobility concepts, such as electric cars and fuel-cell-powered cars, the significance and use of liquid fuels is anticipated to stay high during the 2030s.
Biomethane and synthetic natural gas (SNG) might play a major role in this context, as they are raw material for chemical industry that is easy to be stored and distribute via existing infrastructure, and are a versatile energy carrier for power generation and mobile applications.
Since biomethane and synthetic natural gas are suitable for power generation and for mobile applications, they can therefore replace natural gas without any infrastructure changes, thus playing a major role.
In this paper, we aim to comprehend the direct production of synthetic natural gas from CO2 and H2 in a Sabatier process based on a thermodynamic analysis as well as a multi-step kinetic approach.
For this purpose, we thoroughly discuss CO2 methanation to control emissions in order to maximize the methane formation along with minimizing the CO formation and to understand the complex methanation process.
We consider an equilibrium and kinetic modeling study on the NiO-SiO2 catalyst for methanation focusing on CO2-derived SNG.
The thermodynamic analysis of CO2 hydrogenation is preformed to define the optimal process parameters followed by the kinetic simulations for catalyst development.
The investigation presented in this paper can also be used for developing machine learning algorithms for methanation processes.

Related Results

Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Naturally occurring CO2 reservoirs across the USA are critical natural analogues of long-term CO2 storage in the subsurface over geological timescales and provide valuable insights...
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Abstract Numerous CO2 injection pipeline applications have been developed and implemented in the past decades in the UAE and all around the globe. Transporting the C...
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Abstract This paper aims to clarify the mechanism and feasibility of carbon dioxide (CO2) injection into carbonate gas reservoirs to enhance recovery and evaluate it...
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Using carbon dioxide for enhance oil recovery (EOR) has attracted a great deal of attention as the world grapples with the twin challenges of improving oil recovery from mature oil...
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Novel CO2 Capture Process Suitable for Near-Term CO2 EOR
Abstract Recent studies have indicted that more than 40 billion barrels of additional oil can be produced economically with CO2-EOR for a low CO2 capture cost and an...
Appraising Carbon Geological-Storage Potential in Saline Aquifers Using Pressure-Transient Analysis
Appraising Carbon Geological-Storage Potential in Saline Aquifers Using Pressure-Transient Analysis
ABSTRACT Pressure transient analysis (PTA), as a powerful technique for CO2 injection data analysis, plays an essential role in assessing the CO2 storage performance...
The Comprehensive Evaluation on the Integral Development of Volcanic Gas Reserves and CO2 Flooding in Jilin Oil Field
The Comprehensive Evaluation on the Integral Development of Volcanic Gas Reserves and CO2 Flooding in Jilin Oil Field
Abstract Pilot-CO2 flooding in Jilin Oil Field has been got a first base in recent years in order to ensure CO2 coming from the development of volcanic gas reserv...
Geologic CO2 Storage in Oil Fields: Considerations for Successful Sites
Geologic CO2 Storage in Oil Fields: Considerations for Successful Sites
Abstract Geologic storage of anthropogenic CO2 is being considered and tested in several subsurface settings. Deep brine-bearing formations hold the promise of stori...

Back to Top