Javascript must be enabled to continue!
Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl
View through CrossRef
The reversing heat capacity of vapor-deposited o-terphenyl glasses was determined by in situ alternating current nanocalorimetry. Glasses were deposited at substrate temperatures ranging from 0.39 Tg to Tg, where Tg is the glass transition temperature. Glasses deposited near 0.85 Tg exhibited very high kinetic stability; a 460 nm film required ∼104.8 times the structural relaxation time of the equilibrium supercooled liquid to transform into the liquid state. For the most stable o-terphenyl glasses, the heat capacity was lower than that of the ordinary liquid-cooled glass by (1 ± 0.4)%; this decrease represents half of the difference in heat capacity between the ordinary glass and crystal. Vapor-deposited o-terphenyl glasses exhibit greater kinetic stability than vapor-deposited glasses of indomethacin, in qualitative agreement with recent surface diffusion measurements indicating faster surface diffusion on o-terphenyl glasses. The stable glass to supercooled liquid transformation was thickness-dependent, consistent with transformation via a propagating front initiated at the free surface.
Title: Kinetic stability and heat capacity of vapor-deposited glasses of o-terphenyl
Description:
The reversing heat capacity of vapor-deposited o-terphenyl glasses was determined by in situ alternating current nanocalorimetry.
Glasses were deposited at substrate temperatures ranging from 0.
39 Tg to Tg, where Tg is the glass transition temperature.
Glasses deposited near 0.
85 Tg exhibited very high kinetic stability; a 460 nm film required ∼104.
8 times the structural relaxation time of the equilibrium supercooled liquid to transform into the liquid state.
For the most stable o-terphenyl glasses, the heat capacity was lower than that of the ordinary liquid-cooled glass by (1 ± 0.
4)%; this decrease represents half of the difference in heat capacity between the ordinary glass and crystal.
Vapor-deposited o-terphenyl glasses exhibit greater kinetic stability than vapor-deposited glasses of indomethacin, in qualitative agreement with recent surface diffusion measurements indicating faster surface diffusion on o-terphenyl glasses.
The stable glass to supercooled liquid transformation was thickness-dependent, consistent with transformation via a propagating front initiated at the free surface.
Related Results
Effect of ocean heat flux on Titan's topography and tectonic stresses
Effect of ocean heat flux on Titan's topography and tectonic stresses
INTRODUCTIONThe thermo-mechanical evolution of Titan's ice shell is primarily controlled by the mode of the heat transfer in the ice shell and the amount of heat coming from the oc...
EFEKTIFITAS JENIS DESIKAN DAN KECEPATAN UDARA TERHADAP PENYERAPAN UAP AIR DI UDARA
EFEKTIFITAS JENIS DESIKAN DAN KECEPATAN UDARA TERHADAP PENYERAPAN UAP AIR DI UDARA
Dry air is widely used in many fields, but the excessive water vapor in the air will make some problem and should be minimized to get the required dry air. The purpose of th...
Smart Glasses for Caring Situations in Complex Care Environments: Scoping Review
Smart Glasses for Caring Situations in Complex Care Environments: Scoping Review
Background
Anesthesia departments and intensive care units represent two advanced, high-tech, and complex care environments. Health care in those environments involves ...
Magnesium Heat Sink Evaluations
Magnesium Heat Sink Evaluations
<div class="htmlview paragraph">A system has been constructed to estimate heat dissipated from geometrically identical heat sinks and pinfins extruded from magnesium (M1A) an...
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular,...
Transient Analysis of the Loss of Heat Sink Accident in a New Type of Megawatt Heat Pipe Reactor
Transient Analysis of the Loss of Heat Sink Accident in a New Type of Megawatt Heat Pipe Reactor
Abstract
Heat pipe reactors are one of the ideal reactor types for Unmanned Underwater Vehicles (UUVs) due to high energy density, long lifecycle, modularity, and co...
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Comment on: Macroscopic water vapor diffusion is not enhanced in snow
Abstract. The central thesis of the authors’ paper is that macroscopic water vapor diffusion is not enhanced in snow compared to diffusion through humid air alone. Further, mass di...
ECONOMIC ESSENCE OF THE FINANCIAL STABILITY OF THE BANKING SYSTEM
ECONOMIC ESSENCE OF THE FINANCIAL STABILITY OF THE BANKING SYSTEM
Introduction. The article examines the essence of financial stability and stability of the banking system in order to analyze and understand them. The main approaches to interpreti...

