Javascript must be enabled to continue!
Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus
View through CrossRef
Spontaneous activities of vibrissa-responding neurons in the rat ventrobasal complex (VB) and somatosensory part of the thalamic reticular nucleus (S-TR) were simultaneously recorded and subjected to cross-correlation analysis to investigate the functional organization of recurrent inhibitory action of the S-TR on VB neurons. Excitatory and/or inhibitory interactions were found between approximately 75% (25/34) of the pairs of S-TR and VB neurons with receptive fields (RFs) on the same vibrissa. In contrast, there was no significant interaction between 54 pairs of neurons having RFs on different vibrissae. Among the pairs of neurons with RFs on the same vibrissa, there were four types of correlations, which indicate the following connections: monosynaptic excitation from a VB to an S-TR neuron (7 pairs), monosynaptic inhibition from an S-TR to a VB neuron (10 pairs), reciprocal connection combining the above two types (7 pairs), and common excitation in addition to inhibition from an S-TR to a VB neuron (1 pair). Examples of divergence and convergence of connections between S-TR and VB neurons were demonstrated by testing one S-TR (VB) neuron with more than one VB (S-TR) neuron. Vibrissa-suppressed VB cells, which had exclusively inhibitory RFs, were included in eight pairs of the above samples. These VB cells were more likely to receive inhibitory inputs from S-TR neurons than other VB neurons. Cells with RFs on multiple vibrissae were included in the other 10 pairs. These multiple-vibrissa cells had no interaction with single-vibrissa cells but did with multiple-vibrissa cells. From the incidence of four types of correlation between S-TR and VB neurons with RFs on the same vibrissa, the following connection pattern is suggested: One S-TR neuron receives excitatory inputs from approximately 40% of the VB neurons with RFs on the same vibrissa and sends inhibitory outputs to approximately 55%. Since these two groups of VB neurons were overlapping, the S-TR neuron has reciprocal connections with approximately 20% of the VB neurons with RFs on the same vibrissa. The same estimate was applied to connectivity of one VB neuron. These results indicate that both inputs and outputs of S-TR neurons are precisely and topographically organized, although there is convergence to and divergence from a substantial number of VB neurons with RFs on the same vibrissa. It is proposed that the recurrent inhibitory circuit through the S-TR plays a role in improving discrimination of sensory information transmitted through the VB.
Title: Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus
Description:
Spontaneous activities of vibrissa-responding neurons in the rat ventrobasal complex (VB) and somatosensory part of the thalamic reticular nucleus (S-TR) were simultaneously recorded and subjected to cross-correlation analysis to investigate the functional organization of recurrent inhibitory action of the S-TR on VB neurons.
Excitatory and/or inhibitory interactions were found between approximately 75% (25/34) of the pairs of S-TR and VB neurons with receptive fields (RFs) on the same vibrissa.
In contrast, there was no significant interaction between 54 pairs of neurons having RFs on different vibrissae.
Among the pairs of neurons with RFs on the same vibrissa, there were four types of correlations, which indicate the following connections: monosynaptic excitation from a VB to an S-TR neuron (7 pairs), monosynaptic inhibition from an S-TR to a VB neuron (10 pairs), reciprocal connection combining the above two types (7 pairs), and common excitation in addition to inhibition from an S-TR to a VB neuron (1 pair).
Examples of divergence and convergence of connections between S-TR and VB neurons were demonstrated by testing one S-TR (VB) neuron with more than one VB (S-TR) neuron.
Vibrissa-suppressed VB cells, which had exclusively inhibitory RFs, were included in eight pairs of the above samples.
These VB cells were more likely to receive inhibitory inputs from S-TR neurons than other VB neurons.
Cells with RFs on multiple vibrissae were included in the other 10 pairs.
These multiple-vibrissa cells had no interaction with single-vibrissa cells but did with multiple-vibrissa cells.
From the incidence of four types of correlation between S-TR and VB neurons with RFs on the same vibrissa, the following connection pattern is suggested: One S-TR neuron receives excitatory inputs from approximately 40% of the VB neurons with RFs on the same vibrissa and sends inhibitory outputs to approximately 55%.
Since these two groups of VB neurons were overlapping, the S-TR neuron has reciprocal connections with approximately 20% of the VB neurons with RFs on the same vibrissa.
The same estimate was applied to connectivity of one VB neuron.
These results indicate that both inputs and outputs of S-TR neurons are precisely and topographically organized, although there is convergence to and divergence from a substantial number of VB neurons with RFs on the same vibrissa.
It is proposed that the recurrent inhibitory circuit through the S-TR plays a role in improving discrimination of sensory information transmitted through the VB.
Related Results
PROCEEDINGS OF THE AUSTRALASIAN SOCIETY OF CLINICAL AND EXPERIMENTAL PHARMACOLOGISTS
PROCEEDINGS OF THE AUSTRALASIAN SOCIETY OF CLINICAL AND EXPERIMENTAL PHARMACOLOGISTS
1.Effect of chronic haloperidol treatment on D‐2 receptors labelled by (3H)‐spiperone in homogenates of rat corpus striatum. A. L. Gundlach, D. J. de Vries and P. M. Beart2.The eff...
Magnetic Resonance Spectroscopy of the Thalamus in Essential Tremor Patients
Magnetic Resonance Spectroscopy of the Thalamus in Essential Tremor Patients
ABSTRACTBackground and Purpose. Although essential tremor (ET) is one of the most common movement disorders, its pathogenesis remains obscure. The ventral intermediate nucleus of t...
A Multi-Scale Study of Thalamic State-Dependent Responsiveness
A Multi-Scale Study of Thalamic State-Dependent Responsiveness
AbstractThe thalamus is the brain’s central relay station, orchestrating sensory processing and cognitive functions. However, how thalamic function depends on internal and external...
PROCEEDINGS OF THE AUSTRALASIAN SOCIETY OF CLINICAL AND EXPERIMENTAL PHARMACOLOGISTS
PROCEEDINGS OF THE AUSTRALASIAN SOCIETY OF CLINICAL AND EXPERIMENTAL PHARMACOLOGISTS
14th Annual Meeting, December 1980, Canberra1. Effect of dexamethasone on pineal β‐adrenoceptors. C. A. Maxwell, A. Foldes, N. T. Hinks and R. M. Hoskinson2. A clinicopathological ...
Thalamic Contributions to Functional Circuitry in Preclinical Alzheimer’s Disease
Thalamic Contributions to Functional Circuitry in Preclinical Alzheimer’s Disease
AbstractBackgroundThalamic nuclei are heterogeneously impacted by Alzheimer’s disease (AD) pathology. The anterior thalamus shows tau deposition early on in AD, while other nuclei,...
Thalamic Contributions to Functional Circuitry in Preclinical Alzheimer’s Disease
Thalamic Contributions to Functional Circuitry in Preclinical Alzheimer’s Disease
AbstractBackgroundThalamic nuclei are heterogeneously impacted by Alzheimer’s disease (AD) pathology. The anterior thalamus shows tau deposition early on in AD, while other nuclei,...
Simulation modeling study on short circuit ability of distribution transformer
Simulation modeling study on short circuit ability of distribution transformer
Abstract
Under short circuit condition, the oil immersed distribution transformer will endure combined electro-thermal stress, eventually lead to the mechanical dama...
Development of the Avian Dorsal Thalamus: Patterns and Gradients of Neurogenesis
Development of the Avian Dorsal Thalamus: Patterns and Gradients of Neurogenesis
The dorsal thalamus is a region of the diencephalon that relays sensory and motor information between areas of the brain stem and the telencephalon. Although a dorsal thalamic regi...


