Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Development of a Maintenance Program for Major Gas Turbine Hot Gas Path Parts

View through CrossRef
The thermal efficiency of gas turbine combined cycle power generation plants increase significantly in accordance with turbine inlet temperature. Gas turbine combined cycle power plants operating at high turbine inlet temperature are popular as a main thermal power station among our electric power companies in Japan. Thus, gas turbine hot gas parts are working under extreme conditions which will strongly affect their lifetime as well as maintenance costs for repaired and replaced parts. To reduce the latter is of major importance to enhance cost effectiveness of the plant. This report describes a gas turbine maintenance management program of main hot gas parts (combustor chambers, transition peices, turbine 1st. stage nozzles and 1st. stage buckets) for management persons of gas turbine combined cycle power stations in order to obtain an optimal gas turbine maintenance schedule considering rotation, repair and replacement or exchange of those parts.
Title: Development of a Maintenance Program for Major Gas Turbine Hot Gas Path Parts
Description:
The thermal efficiency of gas turbine combined cycle power generation plants increase significantly in accordance with turbine inlet temperature.
Gas turbine combined cycle power plants operating at high turbine inlet temperature are popular as a main thermal power station among our electric power companies in Japan.
Thus, gas turbine hot gas parts are working under extreme conditions which will strongly affect their lifetime as well as maintenance costs for repaired and replaced parts.
To reduce the latter is of major importance to enhance cost effectiveness of the plant.
This report describes a gas turbine maintenance management program of main hot gas parts (combustor chambers, transition peices, turbine 1st.
stage nozzles and 1st.
stage buckets) for management persons of gas turbine combined cycle power stations in order to obtain an optimal gas turbine maintenance schedule considering rotation, repair and replacement or exchange of those parts.

Related Results

Comprehensive Calculation And Performance Analysis Of Gas Turbine Reversible Power Turbine
Comprehensive Calculation And Performance Analysis Of Gas Turbine Reversible Power Turbine
Gas turbine technology trends to be maturing now, but the problem of which not being able to reverse directly remains resolve. In the field of marine, most ships reverse by adjusta...
Optimizing maintenance logistics on offshore platforms with AI: Current strategies and future innovations
Optimizing maintenance logistics on offshore platforms with AI: Current strategies and future innovations
Offshore platforms are vital assets for the oil and gas industry, serving as the primary facilities for exploration, extraction, and processing. Maintenance logistics plays a cruci...
Influence of impurities contained in fuel and air on sulfide corrosion of turbine blades of the gas turbine engine
Influence of impurities contained in fuel and air on sulfide corrosion of turbine blades of the gas turbine engine
In the process of improving gas turbine engines (GTE), increasing the resource and efficiency, there is a constant increase in temperature and pressure of the working fluid. Turbin...
Maintenance optimization for marine mechanical systems
Maintenance optimization for marine mechanical systems
This article proposes a stochastic technique for determining the optimal maintenance policy for marine mechanical systems. The optimal maintenance policy output includes the averag...
Hybrid Offshore Power Generation
Hybrid Offshore Power Generation
Abstract Amid 2020 challenging business environments due to COVID-19 pandemic and strong global push towards transition to cleaner energy, PETRONAS has declared its'...
On-Design and Off-Design Performance Analysis of a Gas Turbine Combined Cycle Using the Exergy Method
On-Design and Off-Design Performance Analysis of a Gas Turbine Combined Cycle Using the Exergy Method
The present paper describes an on-design and an off-design performance study of gas turbine combined cycle based power plants. The exergy analysis has been carried out along with t...
SIMULATION AND PIV EXPERIMENT OF THE DUCTED WATER CURRENT TURBINE AND EXTREMELY LOW HEAD HELICAL TURBINE
SIMULATION AND PIV EXPERIMENT OF THE DUCTED WATER CURRENT TURBINE AND EXTREMELY LOW HEAD HELICAL TURBINE
This research introduced for the Ducted Water Current Turbine Triple Helix with very low head less than 2m and water current at river or in the ocean, economical ecological use for...
Reduced-Order Through-Flow Design Code for Highly Loaded, Cooled Axial Turbines
Reduced-Order Through-Flow Design Code for Highly Loaded, Cooled Axial Turbines
The development of advanced computational fluid dynamic codes for turbine design does not substitute the importance of mean-line codes. Turbine design involves mean-line design, th...

Back to Top