Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition

View through CrossRef
AbstractSpecies tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.]
Title: DISCO: Species Tree Inference using Multicopy Gene Family Tree Decomposition
Description:
AbstractSpecies tree inference from gene family trees is a significant problem in computational biology.
However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging.
While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory.
We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used.
We prove that using DISCO with ASTRAL (i.
e.
, ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree.
We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.
g.
, ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees.
We also compare results using MI, an alternative decomposition strategy from Yang Y.
and Smith S.
A.
(2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition.
[Concatenation analysis; gene duplication and loss; species tree inference; summary method.
].

Related Results

Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
<p><em><span style="font-size: 11.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-langua...
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Even Star Decomposition of Complete Bipartite Graphs
Even Star Decomposition of Complete Bipartite Graphs
<p><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">A decomposition (</span><span><span style="font-family: 宋体; font-size: medi...
Expression and polymorphism of genes in gallstones
Expression and polymorphism of genes in gallstones
ABSTRACT Through the method of clinical case control study, to explore the expression and genetic polymorphism of KLF14 gene (rs4731702 and rs972283) and SR-B1 gene (rs...
TIPOS DE DEGENERAÇÃO DO DISCO INTERVERTEBRAL EM CÃES
TIPOS DE DEGENERAÇÃO DO DISCO INTERVERTEBRAL EM CÃES
Introdução: A hérnia do disco intervertebral é uma afecção neurológica que ocorre devido a degeneração do disco intervertebral (DDIV) , podendo levar a uma extrusão ou a uma protus...
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
<p align="justify"><span style="color: #000000;"><span style="font-family: 'Times New Roman', serif;"><span><span lang="pt-BR">É indiscutível a import...
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
The Application of S‐transform Spectrum Decomposition Technique in Extraction of Weak Seismic Signals
AbstractIn processing of deep seismic reflection data, when the frequency band difference between the weak useful signal and noise both from the deep subsurface is very small and h...
The Sensitivity Feature Analysis for Tree Species Based on Image Statistical Properties
The Sensitivity Feature Analysis for Tree Species Based on Image Statistical Properties
While the statistical properties of images are vital in forestry engineering, the usefulness of these properties in various forestry tasks may vary, and certain image properties mi...

Back to Top