Javascript must be enabled to continue!
Synthesis and Characterization of MgO-ZrO2 Heterostructure: Optical, Mechanical and Electrical Properties
View through CrossRef
The synthesis and characterization of MgO-ZrO2 heterostructures are examined in this work. To promote the creation of nanowires, the Si substrate is first covered with a catalyst layer of various Au thicknesses. Sputtering is used to achieve this deposition. After that, chemical vapor deposition (CVD) with a Au catalyst layer is used to create MgO nanowire arrays on the silicon substrate. Second, MgO/ZrO2 Core–shell Nanowire Arrays are created by applying ZrO2 layers to the surface of MgO nanowires of different diameters using chemical vapor deposition (CVD) procedures. The presence of both magnesium oxide (MgO) and zirconium dioxide (ZrO2) in their oxidized forms was shown by the detailed characterization of the MgO-ZrO2 core–shell nanowire samples utilizing a variety of methods. Phase formation, mechanical homogeneity, optical characteristics, and topographical structure and roughness were all thoroughly examined at various stresses. MgO hardness values ranged from 1.4 to 3.2 GPa, whereas MgO-ZrO2 ranged from 0.38 to 1.2 GPa. The I–V parameter study was a further step in the examination of the heterostructure’s electrical properties. The structural, morphological, optical, mechanical, and electrical properties of the MgO-ZrO2 heterostructure were all thoroughly described using these techniques.
Title: Synthesis and Characterization of MgO-ZrO2 Heterostructure: Optical, Mechanical and Electrical Properties
Description:
The synthesis and characterization of MgO-ZrO2 heterostructures are examined in this work.
To promote the creation of nanowires, the Si substrate is first covered with a catalyst layer of various Au thicknesses.
Sputtering is used to achieve this deposition.
After that, chemical vapor deposition (CVD) with a Au catalyst layer is used to create MgO nanowire arrays on the silicon substrate.
Second, MgO/ZrO2 Core–shell Nanowire Arrays are created by applying ZrO2 layers to the surface of MgO nanowires of different diameters using chemical vapor deposition (CVD) procedures.
The presence of both magnesium oxide (MgO) and zirconium dioxide (ZrO2) in their oxidized forms was shown by the detailed characterization of the MgO-ZrO2 core–shell nanowire samples utilizing a variety of methods.
Phase formation, mechanical homogeneity, optical characteristics, and topographical structure and roughness were all thoroughly examined at various stresses.
MgO hardness values ranged from 1.
4 to 3.
2 GPa, whereas MgO-ZrO2 ranged from 0.
38 to 1.
2 GPa.
The I–V parameter study was a further step in the examination of the heterostructure’s electrical properties.
The structural, morphological, optical, mechanical, and electrical properties of the MgO-ZrO2 heterostructure were all thoroughly described using these techniques.
Related Results
A study of The use of Manuka Honey and Methylglyoxal to Impart Antimicrobial Activity to Wool Textiles and Polymers
A study of The use of Manuka Honey and Methylglyoxal to Impart Antimicrobial Activity to Wool Textiles and Polymers
<p><b>Methylglyoxal (MGO), which is an ingredient in New Zealand Manuka honey (MH) possesses unique antimicrobial properties against a broad range of bacteria. MGO has ...
Tuning Selectivity of Maleic Anhydride Hydrogenation Reaction over Ni/Sc-Doped ZrO2 Catalysts
Tuning Selectivity of Maleic Anhydride Hydrogenation Reaction over Ni/Sc-Doped ZrO2 Catalysts
A series of Sc-doped ZrO2 supports, with Sc2O3 content in the range of 0 to 7.5% (mol/mol), were prepared using the hydrothermal method. Ni/Sc-doped ZrO2 catalysts with nickel load...
Physico-Chemical and Catalytic Properties of Mesoporous CuO-ZrO2 Catalysts
Physico-Chemical and Catalytic Properties of Mesoporous CuO-ZrO2 Catalysts
Mesoporous CuO-ZrO2 catalysts were prepared and calcined at 500 °C. The performance of the synthesized catalysts for benzylation of benzene using benzyl chloride was studied. The b...
Facile Synthesis and Characterization of Novel CoFe2O4@MgO@(Mg0.23Co0.77)(Mg0.35Co1.65)O4@C and CoFe2O4@MgO@C Nanocomposites for Efficient Removal of Zn(II) Ions from Aqueous Media
Facile Synthesis and Characterization of Novel CoFe2O4@MgO@(Mg0.23Co0.77)(Mg0.35Co1.65)O4@C and CoFe2O4@MgO@C Nanocomposites for Efficient Removal of Zn(II) Ions from Aqueous Media
Excessive levels of Zn(II) ions in aquatic environments pose significant risks to both ecosystems and human health. In aquatic systems, Zn(II) ions disrupt metabolic functions in o...
Oxide Laminates with High Strength and Work-of-Fracture
Oxide Laminates with High Strength and Work-of-Fracture
ABSTRACTSix types of oxide laminates consisting of combinations of xenotime (YPO4) with zirconia (ZrO2), monazite (LaPO4) with ZrO2, and aluminum orthophosphate (AlPO4) with alumin...
Interaction of Ni(II,III) and Sol-Gel Derived ZrO2 in Ni/ZrO2 Catalyst System
Interaction of Ni(II,III) and Sol-Gel Derived ZrO2 in Ni/ZrO2 Catalyst System
ABSTRACTNiO/ZrO2 catalyst has a selectivity for producing higher hydrocarbons, whereas NiO on classical supports gives rise to methanation of CO + H2 mixture. In this study, tetrag...
Estudio fundamental del sistema ZrO₂-WOx
Estudio fundamental del sistema ZrO₂-WOx
In this study, a series of ZrO2-WOx samples was prepared by the following methods: i) Precipitation with impregnation, ii) Coprecipitation and iii) Hydrothermal. The amorphous mate...
EPD Electronic Pathogen Detection v1
EPD Electronic Pathogen Detection v1
Electronic pathogen detection (EPD) is a non - invasive, rapid, affordable, point- of- care test, for Covid 19 resulting from infection with SARS-CoV-2 virus. EPD scanning techno...

