Javascript must be enabled to continue!
Durability of coral-reef-sand concrete beams reinforced with basalt fibre-reinforced polymer bars in seawater
View through CrossRef
A combination of coral reef sand (CRS) concrete and fibre-reinforced polymer (FRP) bars provides an effective solution to the durability deficiency in conventional RC structures. This study experimentally investigates the durability of CRS concrete beams reinforced with basalt FRP (BFRP) bars in a simulated marine environment. Flexural tests are conducted on a total of fourteen CRS concrete beams aged in a cyclic wet-dry saline solution at temperatures of 25, 40 and 55°C. The variables comprise the types of reinforcement (steel and BFRP), the aging duration and the temperature. The failure modes, capacities, deflections and crack development of the beams are analysed and discussed. The results indicate that the ultimate load of the beams exhibits no degradation after aging, whereas the failure mode of the BFRP-CRS concrete beams transition from flexure to shear, which is caused by the degradation in the mechanical properties of the stirrups. The aged BFRP-CRS concrete beams show a substantial increase of over 70% in their initial stiffness compared with the control beams (beams without aging) and a substantial decrease in their crack width after aging due to the prolonged maturation of the concrete. Furthermore, a formula for calculating the shear capacity in the existing code is modified by a partial factor equal to 2, which can predict the capacity of a CRS concrete beam reinforced with BFRP bars in a marine environment.
SAGE Publications
Title: Durability of coral-reef-sand concrete beams reinforced with basalt fibre-reinforced polymer bars in seawater
Description:
A combination of coral reef sand (CRS) concrete and fibre-reinforced polymer (FRP) bars provides an effective solution to the durability deficiency in conventional RC structures.
This study experimentally investigates the durability of CRS concrete beams reinforced with basalt FRP (BFRP) bars in a simulated marine environment.
Flexural tests are conducted on a total of fourteen CRS concrete beams aged in a cyclic wet-dry saline solution at temperatures of 25, 40 and 55°C.
The variables comprise the types of reinforcement (steel and BFRP), the aging duration and the temperature.
The failure modes, capacities, deflections and crack development of the beams are analysed and discussed.
The results indicate that the ultimate load of the beams exhibits no degradation after aging, whereas the failure mode of the BFRP-CRS concrete beams transition from flexure to shear, which is caused by the degradation in the mechanical properties of the stirrups.
The aged BFRP-CRS concrete beams show a substantial increase of over 70% in their initial stiffness compared with the control beams (beams without aging) and a substantial decrease in their crack width after aging due to the prolonged maturation of the concrete.
Furthermore, a formula for calculating the shear capacity in the existing code is modified by a partial factor equal to 2, which can predict the capacity of a CRS concrete beam reinforced with BFRP bars in a marine environment.
Related Results
Modelling regime shifts of coral reefs to sponge reefs
Modelling regime shifts of coral reefs to sponge reefs
<p>Coral reef ecosystems have been degrading globally for decades due to global climate change and anthropogenic pressure, and corals are expected to continue declining in th...
KOMPARASI POLA SPASIAL KONDISI TERUMBU KARANG TAMAN NASIONAL KARIMUNJAWA
KOMPARASI POLA SPASIAL KONDISI TERUMBU KARANG TAMAN NASIONAL KARIMUNJAWA
ABSTRACTComparative studies on the percentage of coral reef substrate cover have been carried out in 3 (three) management zones (protection zone, utilization and Non-MPA) Karimunja...
Enhancing structural behaviour of polypropylene fibre concrete columns longitudinally reinforced with fibreglass bars
Enhancing structural behaviour of polypropylene fibre concrete columns longitudinally reinforced with fibreglass bars
Abstract
The research aims to study the behaviour of concrete columns reinforced with fibreglass as bars exposed to seawater. Firstly, hardened concrete properties a...
Benthic foraminifera associated to cold-water coral ecosystems
Benthic foraminifera associated to cold-water coral ecosystems
Cold-water coral reef ecosystems occur worldwide and are especially developed along the European margin, from northern Norway to the Gulf of Cadiz and into the Western Mediterranea...
Behavior of Ferrocement Beams Using Fiber Glass Mesh and Sea Water
Behavior of Ferrocement Beams Using Fiber Glass Mesh and Sea Water
The current study aims to study the structural behavior of ferrocement beams using seawater to produce concrete beams that can be used as an alternative to conventional reinforced ...
Unidirectional fibre reinforced geopolymer matrix composites
Unidirectional fibre reinforced geopolymer matrix composites
<p>Geopolymers have been suggested in the literature as matrix materials for fibre reinforced composites due to a unique combination of low-temperature synthesis and high tem...
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Lithostratigraphy of the southeastern part of the Ethiopian flood basalt province
Abstract
Fully preserved continental flood basalt stratigraphy provides a perfect window to comprehend the temporal evolution and geological history of plume-related volcan...
Investigating Tensile Behavior of Sustainable Basalt–Carbon, Basalt–Steel, and Basalt–Steel-Wire Hybrid Composite Bars
Investigating Tensile Behavior of Sustainable Basalt–Carbon, Basalt–Steel, and Basalt–Steel-Wire Hybrid Composite Bars
One of the main disadvantages of steel bars is rebar corrosion, especially when they are exposed to aggressive environmental conditions such as marine environments. One of the sugg...


