Javascript must be enabled to continue!
Bond Performance of Sand Coated UHM CFRP Tendons in High Performance Concrete
View through CrossRef
The bond behaviour of novel, sand-coated ultra-high modulus (UHM) carbon fibre reinforced polymers (CFRP) tendons to high performance concrete (HPC) was studied by a combined numerical and experimental approach. A series of pull-out tests revealed that the failure type can vary between sudden and continuous pull-out depending on the chosen sand coating grain size. Measuring the same shear stress vs. tendon draw-in (τ-δ) curves in the same test set-up, for sand coated CFRP tendons with a longitudinal stiffness of 137 and 509 GPa, respectively, indicated that the absolute bond strength in both cases was not influenced by the tendon’s stiffness. However, the τ-δ curves significantly differed in terms of the draw-in rate, showing higher draw-in rate for the UHM CFRP tendon. With the aid of X-ray computed tomography (CT), scanning electron microscopy (SEM) and visual analysis methods, the bond failure interface was located between the CFRP tendon and the surrounding sand-epoxy layer. For further investigation, a simplified finite element analysis (FEA) of the tendon pull-out was performed using a cohesive surface interaction model and the software Abaqus 6.14. A parametric study, varying the tendon-related material properties, revealed the tendon’s longitudinal stiffness to be the only contributor to the difference in the τ-δ curves found in the experiments, thus to the shear stress transfer behaviour between the CFRP tendon and the concrete. In conclusion, the excellent bond of the sand-coated UHM CFRP tendons to HPC as well as the deeper insight in the bond failure mechanism encourages the application of UHM CFRP tendons for prestressing applications.
Title: Bond Performance of Sand Coated UHM CFRP Tendons in High Performance Concrete
Description:
The bond behaviour of novel, sand-coated ultra-high modulus (UHM) carbon fibre reinforced polymers (CFRP) tendons to high performance concrete (HPC) was studied by a combined numerical and experimental approach.
A series of pull-out tests revealed that the failure type can vary between sudden and continuous pull-out depending on the chosen sand coating grain size.
Measuring the same shear stress vs.
tendon draw-in (τ-δ) curves in the same test set-up, for sand coated CFRP tendons with a longitudinal stiffness of 137 and 509 GPa, respectively, indicated that the absolute bond strength in both cases was not influenced by the tendon’s stiffness.
However, the τ-δ curves significantly differed in terms of the draw-in rate, showing higher draw-in rate for the UHM CFRP tendon.
With the aid of X-ray computed tomography (CT), scanning electron microscopy (SEM) and visual analysis methods, the bond failure interface was located between the CFRP tendon and the surrounding sand-epoxy layer.
For further investigation, a simplified finite element analysis (FEA) of the tendon pull-out was performed using a cohesive surface interaction model and the software Abaqus 6.
14.
A parametric study, varying the tendon-related material properties, revealed the tendon’s longitudinal stiffness to be the only contributor to the difference in the τ-δ curves found in the experiments, thus to the shear stress transfer behaviour between the CFRP tendon and the concrete.
In conclusion, the excellent bond of the sand-coated UHM CFRP tendons to HPC as well as the deeper insight in the bond failure mechanism encourages the application of UHM CFRP tendons for prestressing applications.
Related Results
CFRP Mooring Lines For Modu Applications
CFRP Mooring Lines For Modu Applications
Abstract
Precise station keeping is a requirement of mobile offshore drilling units (MODUs) and production vessels operating in ultra-deepwater. DeepSea Engineeri...
EVALUASI KINERJA ENERGI SERAP BALOK JEMBATAN KOMPOSIT KAYU LAMINASI-BETON BERLAPIS CFRP PADA BEBAN STATIS
EVALUASI KINERJA ENERGI SERAP BALOK JEMBATAN KOMPOSIT KAYU LAMINASI-BETON BERLAPIS CFRP PADA BEBAN STATIS
This study aims to analyse the ability of a glulam-concrete composite bridge beam coated with carbon fibre-reinforced polymer (CFRP) to absorb energy under static loading condition...
Research and Development of a Three-Piece Tendon for a TLP
Research and Development of a Three-Piece Tendon for a TLP
Abstract
Research and development of TLP tendon is described. Forged tendons are in actual use but their cost increases rapidly as the diameter becomes greater.
...
Study on Prestressed Concrete Beams Strengthened with External Unbonded CFRP Tendons
Study on Prestressed Concrete Beams Strengthened with External Unbonded CFRP Tendons
This study builds a refined finite element (FE) model to research the flexural behavior of a reinforced beam with prestressed CFRP tendons. The precision of the FE model is validat...
Microstructure and Mechanical Behavior of Concrete Based on Crushed Sand Combined with Alluvial Sand
Microstructure and Mechanical Behavior of Concrete Based on Crushed Sand Combined with Alluvial Sand
The aim of this work is to reduce the overexploitation of river sand by proposing a combination of crushed sand and river sand to develop an optimal mix design for concrete. The ap...
Evaluating the Sand-Trapping Efficiency of Sand Fences Using a Combination of Wind-Blown Sand Measurements and UAV Photogrammetry at Tottori Sand Dunes, Japan
Evaluating the Sand-Trapping Efficiency of Sand Fences Using a Combination of Wind-Blown Sand Measurements and UAV Photogrammetry at Tottori Sand Dunes, Japan
Fences are commonly used in coastal regions to control wind-blown sand. Sand-trapping fences and sand-stabilizing fences have been installed at the Tottori Sand Dunes, Tottori Pref...
A Sand Failure Test Can Cut Both Completion Costs And The Number Of Developement Wells
A Sand Failure Test Can Cut Both Completion Costs And The Number Of Developement Wells
Abstract
The objective of this Sand Failure Test was to determine whether initial sand control is necessary on a poorly consolidated gas field, or whether it can ...
Recycled CFRP Plate Retrofitting using Adhesive and TRS for Steel Girders
Recycled CFRP Plate Retrofitting using Adhesive and TRS for Steel Girders
AbstractThe retrofitting method using CFRP (Carbon Fiber Reinforced Plastic) plates was applied to a steel highway bridge in 2002 for the first time in Japan, where some of CFRP pl...

