Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Response of lignin and flavonoid metabolic pathways in Capsicum annuum to drought and waterlogging stresses

View through CrossRef
Water stress is a critical factor limiting the growth and development of Capsicum annuum. Flavonoids and lignin are important secondary metabolites that serve as signaling molecules in plant stress responses. However, the effects and regulatory mechanisms of lignin and flavonoids under water stress in Capsicum annuum remain unknown. The present study focused on the effects of drought and waterlogging stress on the morphology, hydrogen peroxide, and relative chlorophyll (SPAD), as well as enzyme activities, metabolite contents, and gene expression related to lignin and flavonoid metabolic pathways in Capsicum annuum. The results showed that drought and waterlogging stresses on the Capsicum annuum variety ‘Shuyu2’ significantly reduced plant height, stem thickness, and single-fruit weight, and increased fruit shape coefficients. Drought stress increased H2O2 and SPAD content, enhanced the activity levels of metabolic enzymes (phenylalanine deaminase, cinnamate 4-hydroxylase, coenzyme A ligase, peroxidase, and polyphenol oxidase), and up-regulated the expression of related genes, phenylalanine deaminase (PAL), trans-cinnamate monooxygenase (C4H), chalcone isomerase (CHI), and mangiferyl hydroxycinnamoyltransferase (HCT), while also promoting the accumulation of metabolites (total phenolics, flavonoids, and lignin) that have a restorative effect on drought stress. The continuous accumulation of H2O2 and the increase and then decrease in SPAD under waterlogging stress was also observed. Waterlogging stress also enhanced the activities of the above-mentioned metabolic enzymes, but the related genes were selectively down-regulated, e.g., C4H, 4CL, and peroxidase (POD), which resulted in the inhibition of the synthesis of lignin, flavonoids, and total phenols. These results indicate that the Capsicum annuum variety ‘Shuyu2’ is a drought-tolerant, waterlogging-sensitive variety. Meanwhile, the lignin and flavonoid pathway is a key pathway in response to drought stress in Capsicum annuum, which improves the theory of stress tolerance breeding in Capsicum annuum.
Title: Response of lignin and flavonoid metabolic pathways in Capsicum annuum to drought and waterlogging stresses
Description:
Water stress is a critical factor limiting the growth and development of Capsicum annuum.
Flavonoids and lignin are important secondary metabolites that serve as signaling molecules in plant stress responses.
However, the effects and regulatory mechanisms of lignin and flavonoids under water stress in Capsicum annuum remain unknown.
The present study focused on the effects of drought and waterlogging stress on the morphology, hydrogen peroxide, and relative chlorophyll (SPAD), as well as enzyme activities, metabolite contents, and gene expression related to lignin and flavonoid metabolic pathways in Capsicum annuum.
The results showed that drought and waterlogging stresses on the Capsicum annuum variety ‘Shuyu2’ significantly reduced plant height, stem thickness, and single-fruit weight, and increased fruit shape coefficients.
Drought stress increased H2O2 and SPAD content, enhanced the activity levels of metabolic enzymes (phenylalanine deaminase, cinnamate 4-hydroxylase, coenzyme A ligase, peroxidase, and polyphenol oxidase), and up-regulated the expression of related genes, phenylalanine deaminase (PAL), trans-cinnamate monooxygenase (C4H), chalcone isomerase (CHI), and mangiferyl hydroxycinnamoyltransferase (HCT), while also promoting the accumulation of metabolites (total phenolics, flavonoids, and lignin) that have a restorative effect on drought stress.
The continuous accumulation of H2O2 and the increase and then decrease in SPAD under waterlogging stress was also observed.
Waterlogging stress also enhanced the activities of the above-mentioned metabolic enzymes, but the related genes were selectively down-regulated, e.
g.
, C4H, 4CL, and peroxidase (POD), which resulted in the inhibition of the synthesis of lignin, flavonoids, and total phenols.
These results indicate that the Capsicum annuum variety ‘Shuyu2’ is a drought-tolerant, waterlogging-sensitive variety.
Meanwhile, the lignin and flavonoid pathway is a key pathway in response to drought stress in Capsicum annuum, which improves the theory of stress tolerance breeding in Capsicum annuum.

Related Results

Drought-Hardening Improve Waterlogging Tolerance of Maize at Seedling Stage
Drought-Hardening Improve Waterlogging Tolerance of Maize at Seedling Stage
Abstract This study aimed to investigate the stress tolerance of maize by exploring the changes in abscisic acid (ABA) concentration, biomass accumulation, and transpiratio...
Comparison of Flash Drought and Traditional Drought on Characteristics and Driving Forces in Xinjiang
Comparison of Flash Drought and Traditional Drought on Characteristics and Driving Forces in Xinjiang
In the context of climate warming, flash drought has become increasingly frequent, posing significant threats to agriculture, ecosystems, and the environment. Xinjiang, located in ...
Meteorological Drought Variability over Africa from Multisource Datasets
Meteorological Drought Variability over Africa from Multisource Datasets
This study analyses the spatiotemporal variability of meteorological drought over Africa and its nine climate subregions from an ensemble of 19 multisource datasets (gauge-based, s...
Comparative studies of plant growth and distribution in relation to waterlogging
Comparative studies of plant growth and distribution in relation to waterlogging
summaryPopulations of Geum rivale L. and G. urbanum L. were collected from a range of habitats; G. rivale usually occurred in wetter and less‐shaded habitats than G. urbanum. Popul...
Effect of waterlogging on photosynthesis and growth of finger millet (Eleusine coracana)
Effect of waterlogging on photosynthesis and growth of finger millet (Eleusine coracana)
AbstractFinger millet (Eleusine coracana (L.) Gaertn.) is an important cereal crop grown in most parts of Asia and Africa owing to its ability to adapt to stressful environments. T...
Waterlogging increases greenhouse gas release and decreases yield in winter rapeseed (Brassica napus L.) seedlings
Waterlogging increases greenhouse gas release and decreases yield in winter rapeseed (Brassica napus L.) seedlings
AbstractA sustainable future depends on increasing agricultural carbon (C) and nitrogen (N) sequestration. Winter rapeseeds are facing severe yield loss after waterlogging due to t...
Effects of Fertilization Patterns on the Growth of Rapeseed Seedlings and Rhizosphere Microorganisms under Flooding Stress
Effects of Fertilization Patterns on the Growth of Rapeseed Seedlings and Rhizosphere Microorganisms under Flooding Stress
In order to explore the effect of fertilization patterns on the growth of rapeseed seedlings under waterlogging stress, three fertilization patterns (conventional fertilization, su...
Validity and reliability of a flavonoid-focused food frequency questionnaire for Chinese adults
Validity and reliability of a flavonoid-focused food frequency questionnaire for Chinese adults
Abstract Background: In recent years, an increasing amount of evidence from nutritional epidemiological studies has revealed an association between flavonoid intake and non...

Back to Top