Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Numerical investigation on the discharge formation in micrometer pores in structured catalyst irradiated by a helium atmospheric pressure plasma jet

View through CrossRef
Abstract Non-thermal plasma catalysis is a promising way to achieve high efficiency in applications such as energy conversion and chemical engineering. Although synergistic effects between plasmas and catalysts have been preliminarily considered as an underlying mechanism of this type of catalysis, the formation of discharges in small-size catalyst pores, which is possibly a crucial factor in plasma-activated catalysis, is still not well understood. In this paper, investigations on the interactions between a helium atmospheric pressure plasma jet (APPJ) and catalysts with micrometer-sized pores of different shapes and sizes are conducted with a 2D fluid model. Simulation results show that the existence of pores makes a subtle difference to the APPJ by changing the equivalent capacitance, indicating the potential to achieve moderate and stable APPJ-catalyst interactions. Traces of air impurities in helium can promote discharges in catalyst pores, and thus allow discharges to form in smaller pores. In the case when the catalyst channel is too small for direct APPJ penetration, we propose a method by producing a prior discharge in a relatively large cavity to supply seed electrons to ignite discharges inside the channel. The effects of channel and cavity sizes are discussed from the perspectives of discharge behavior and plasma-surface interactions. This work will contribute to the preparation of structured catalysts to potentially achieve higher efficient plasma catalysis, and better understanding of the physical processes in plasma-surface interactions inside micrometer pores.
Title: Numerical investigation on the discharge formation in micrometer pores in structured catalyst irradiated by a helium atmospheric pressure plasma jet
Description:
Abstract Non-thermal plasma catalysis is a promising way to achieve high efficiency in applications such as energy conversion and chemical engineering.
Although synergistic effects between plasmas and catalysts have been preliminarily considered as an underlying mechanism of this type of catalysis, the formation of discharges in small-size catalyst pores, which is possibly a crucial factor in plasma-activated catalysis, is still not well understood.
In this paper, investigations on the interactions between a helium atmospheric pressure plasma jet (APPJ) and catalysts with micrometer-sized pores of different shapes and sizes are conducted with a 2D fluid model.
Simulation results show that the existence of pores makes a subtle difference to the APPJ by changing the equivalent capacitance, indicating the potential to achieve moderate and stable APPJ-catalyst interactions.
Traces of air impurities in helium can promote discharges in catalyst pores, and thus allow discharges to form in smaller pores.
In the case when the catalyst channel is too small for direct APPJ penetration, we propose a method by producing a prior discharge in a relatively large cavity to supply seed electrons to ignite discharges inside the channel.
The effects of channel and cavity sizes are discussed from the perspectives of discharge behavior and plasma-surface interactions.
This work will contribute to the preparation of structured catalysts to potentially achieve higher efficient plasma catalysis, and better understanding of the physical processes in plasma-surface interactions inside micrometer pores.

Related Results

Modeling and simulations of DC and RF atmospheric pressure non-thermal micro plasma discharges
Modeling and simulations of DC and RF atmospheric pressure non-thermal micro plasma discharges
Atmospheric pressure non-thermal plasma discharges are attractive for a wide range of applications due to their operational flexibility. Among the different atmospheric pressure no...
Cavitation in Submerged Water Jet at High Jet Pressure
Cavitation in Submerged Water Jet at High Jet Pressure
Recent industrial applications have unfolded a promising prospect for submerged water jet. Apart from widely acknowledged water jet properties, submerged water jet is characterized...
Magnetohydrodynamics enhanced radio blackout mitigation system for spacecraft during planetary entries
Magnetohydrodynamics enhanced radio blackout mitigation system for spacecraft during planetary entries
(English) Spacecraft entering planetary atmospheres are enveloped by a plasma layer with high levels of ionization, caused by the extreme temperatures in the shock layer. The charg...
Study on the image recognition of ammonia ignition process induced by methanol micro-jet
Study on the image recognition of ammonia ignition process induced by methanol micro-jet
<div class="section abstract"><div class="htmlview paragraph">Ammonia is regarded as a possible carbon-free energy source for engines, drawing more and more attention. ...
Investigation on the characteristics of dielectric barrier discharge with fairly large volume generated in air at atmospheric pressure
Investigation on the characteristics of dielectric barrier discharge with fairly large volume generated in air at atmospheric pressure
By using a tri-electrode dielectric barrier discharge device, a uniform discharge with fairly large volume is realized in the main discharge region in atmospheric pressure air. The...
Rotating characteristics of glow discharge filament on liquid electrode surface
Rotating characteristics of glow discharge filament on liquid electrode surface
Atmospheric pressure glow discharge above liquid electrode has extensive application potentials in biomedicine, chemical degradation,environmental protection,etc.In this paper,such...
Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet
Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet
In order to reduce the drag reduction of the fluid on the solid wall, based on the biology characteristics of earthworm, the earthworm's back orifice jet characteristic is analyzed...
Numerical Study on Flow Characteristics of Liquid Jet in Airflows
Numerical Study on Flow Characteristics of Liquid Jet in Airflows
Abstract The interaction between the fuel jet, the oil jet and the airflow is involved in the afterburner (or ramjet combustion chamber) and the lubricating oil syst...

Back to Top