Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Novel Techniques for Classifying Exotic Spheres in High Dimensions

View through CrossRef
Discrete calculus deals with developing the concepts and techniques of differential and integral calculus in a discrete setting, often using difference equations and discrete function spaces. This paper explores how differential-difference algebra can provide an algebraic framework for advancing discrete calculus. Differential-difference algebra studies algebraic structures equipped with both differential and difference operators. These hybrid algebraic systems unify continuous and discrete analogues of derivatives and shifts. This allows the development of general theorems and properties that cover both settings. In particular, we construct differential-difference polynomial rings and fields over discrete function spaces. We define discrete derivatives and shifts algebraically using these operators. We then study integration, summation formulas, fundamental theorems, and discrete analogues of multivariate calculus concepts from an algebraic perspective. A key benefit is being able to state unified theorems in differential-difference algebra that simultaneously yield results for both the continuous and discrete cases. This provides new tools and insights for discrete calculus using modern algebraic techniques. We also discuss applications of representing discrete calculus problems in differential-difference algebras. This allows bringing to bear algebraic methods and software tools for their solution. Specific examples are provided in areas such as numerical analysis of discrete dynamical systems defined through difference equations. The paper aims to demonstrate the capabilities of differential-difference algebra as a unifying framework for further developing the foundations and applications of discrete calculus. Broader connections to algebraic modeling of discrete physical systems are also discussed.
Title: Novel Techniques for Classifying Exotic Spheres in High Dimensions
Description:
Discrete calculus deals with developing the concepts and techniques of differential and integral calculus in a discrete setting, often using difference equations and discrete function spaces.
This paper explores how differential-difference algebra can provide an algebraic framework for advancing discrete calculus.
Differential-difference algebra studies algebraic structures equipped with both differential and difference operators.
These hybrid algebraic systems unify continuous and discrete analogues of derivatives and shifts.
This allows the development of general theorems and properties that cover both settings.
In particular, we construct differential-difference polynomial rings and fields over discrete function spaces.
We define discrete derivatives and shifts algebraically using these operators.
We then study integration, summation formulas, fundamental theorems, and discrete analogues of multivariate calculus concepts from an algebraic perspective.
A key benefit is being able to state unified theorems in differential-difference algebra that simultaneously yield results for both the continuous and discrete cases.
This provides new tools and insights for discrete calculus using modern algebraic techniques.
We also discuss applications of representing discrete calculus problems in differential-difference algebras.
This allows bringing to bear algebraic methods and software tools for their solution.
Specific examples are provided in areas such as numerical analysis of discrete dynamical systems defined through difference equations.
The paper aims to demonstrate the capabilities of differential-difference algebra as a unifying framework for further developing the foundations and applications of discrete calculus.
Broader connections to algebraic modeling of discrete physical systems are also discussed.

Related Results

The Exotic Materials at the Chang’e-5 Landing Site
The Exotic Materials at the Chang’e-5 Landing Site
IntroductionThe Chang’e-5 (CE-5) mission is China’s first lunar sample return mission. CE-5 landed at Northern Oceanus Procellarum (43.06°N, 51.92&...
A Review of the Exotic Fishes in Arunachal Pradesh State, India
A Review of the Exotic Fishes in Arunachal Pradesh State, India
In order to cater high demand for domestic fish protein, many fast growing exotic fish species have been introduced for aquaculture in the last few decades, particularly in Arunach...
Participatory Budgeting and the Formation of Public Spheres
Participatory Budgeting and the Formation of Public Spheres
Objective: Describe the role of participatory budgeting (PB) in the formation of public spheres.   Theoretical Framework: The research is based on Habermas's (2012) theory of com...
Genetic diversity of exotic and local eggplants (Solanum spp.) cultivated in Côte d’Ivoire based on ISSR markers
Genetic diversity of exotic and local eggplants (Solanum spp.) cultivated in Côte d’Ivoire based on ISSR markers
Abstract. Konan NO, Akaffou MA, Kouadio L, Akaffou DS, Mergeai G. 2020. Genetic diversity of exotic and local eggplants (Solanum spp.) cultivated in Côte d’Ivoire based on ISSR mar...
Parallel water entry: Experimental investigations of hydrophobic/hydrophilic spheres
Parallel water entry: Experimental investigations of hydrophobic/hydrophilic spheres
This study aims to experimentally investigate the vertical parallel water entry of two identical spheres (in geometry and material) with different surface wettability (hydrophilic ...
Optimising tool wear and workpiece condition monitoring via cyber-physical systems for smart manufacturing
Optimising tool wear and workpiece condition monitoring via cyber-physical systems for smart manufacturing
Smart manufacturing has been developed since the introduction of Industry 4.0. It consists of resource sharing and networking, predictive engineering, and material and data analyti...
serpent 2 Validation for Radiation Shielding Applications
serpent 2 Validation for Radiation Shielding Applications
Abstract This paper contributes to the validation of serpent's photon transport and coupled neutron–photon transport routines. Two benchmarks presenting measurements...
Methods for detecting “missing” dimensions in genetic covariance matrices
Methods for detecting “missing” dimensions in genetic covariance matrices
AbstractBlows and Hoffmann (2005) and others have suggested that low levels of genetic variation in some dimensions of an additive genetic variance-covariance matrix (G) will be de...

Back to Top