Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Using Unassigned NMR Chemical Shifts to Model RNA Secondary Structure

View through CrossRef
AbstractNMR-derived chemical shifts are sensitive probes of RNA structure. However, the need to assign NMR spectra hampers their utility as a direct source of structural information. In this report, we describe a simple method that uses unassigned 2D NMR spectra to model the secondary structure of RNAs. Similar to assigned chemical shifts, we could use unassigned chemical shift data to reweight conformational libraries such that the highest weighted structure closely resembles their reference NMR structure. Furthermore, the application of our approach to the 3’- and 5’-UTR of the SARS-CoV-2 genome yields structures that are, for the most part, consistent with the secondary structure models derived from chemical probing data. Therefore, we expect the framework we describe here will be useful as a general strategy for rapidly generating preliminary structural RNA models directly from unassigned 2D NMR spectra. As we demonstrated for the 337-nt and 472-nt UTRs of SARS-CoV-2, our approach could be especially valuable for modeling the secondary structures of large RNA.
Cold Spring Harbor Laboratory
Title: Using Unassigned NMR Chemical Shifts to Model RNA Secondary Structure
Description:
AbstractNMR-derived chemical shifts are sensitive probes of RNA structure.
However, the need to assign NMR spectra hampers their utility as a direct source of structural information.
In this report, we describe a simple method that uses unassigned 2D NMR spectra to model the secondary structure of RNAs.
Similar to assigned chemical shifts, we could use unassigned chemical shift data to reweight conformational libraries such that the highest weighted structure closely resembles their reference NMR structure.
Furthermore, the application of our approach to the 3’- and 5’-UTR of the SARS-CoV-2 genome yields structures that are, for the most part, consistent with the secondary structure models derived from chemical probing data.
Therefore, we expect the framework we describe here will be useful as a general strategy for rapidly generating preliminary structural RNA models directly from unassigned 2D NMR spectra.
As we demonstrated for the 337-nt and 472-nt UTRs of SARS-CoV-2, our approach could be especially valuable for modeling the secondary structures of large RNA.

Related Results

B-247 BLADE-R: streamlined RNA extraction for clinical diagnostics and high-throughput applications
B-247 BLADE-R: streamlined RNA extraction for clinical diagnostics and high-throughput applications
Abstract Background Efficient nucleic acid extraction and purification are crucial for cellular and molecular biology research, ...
Porosity Distribution of Carbonate Reservoirs Using Low Field NMR
Porosity Distribution of Carbonate Reservoirs Using Low Field NMR
Abstract Alberta contains significant deposits of oil and gas in carbonate formations. Carbonates tend to have fairly tight matrix structures, resulting in low pr...
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. Thes...
Detection of Multiple Types of Cancer Driver Mutations Using Targeted RNA Sequencing in NSCLC
Detection of Multiple Types of Cancer Driver Mutations Using Targeted RNA Sequencing in NSCLC
ABSTRACTCurrently, DNA and RNA are used separately to capture different types of gene mutations. DNA is commonly used for the detection of SNVs, indels and CNVs; RNA is used for an...
Abstract 2323: Deciphering RNA degradation: Insights from a comparative analysis of paired fresh frozen/FFPE total RNA-seq
Abstract 2323: Deciphering RNA degradation: Insights from a comparative analysis of paired fresh frozen/FFPE total RNA-seq
Abstract Background: Fresh frozen (FF) and formalin-fixed paraffin-embedded (FFPE) samples are primary resources for archival tissues in cancer studies. Despite the ...
Conformational dynamics of RNA
Conformational dynamics of RNA
Two projects are presented in this thesis, showcasing the application of PELDOR spectroscopy, and, more specifically, orientation-selective PELDOR spectroscopy to the study of the ...
Molecular Drivers of RNA Phase Separation
Molecular Drivers of RNA Phase Separation
AbstractRNA molecules are essential in orchestrating the assembly of biomolecular condensates and membraneless compartments in cells. Many condensates form via the association of R...

Back to Top