Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis

View through CrossRef
AbstractThe performance of supercapacitor energy storage is depending on the type of the material that is used as supercapacitor electrode. Graphene has been widely used as the base material for a lot of applications due to its remarkable properties. In this research, we try to combine 3D Graphene with waste material fly ash to be used as the electrode of supercapacitor. Fly ash is a residual material from burning pulverized coal in electric generation power plants which contain metal oxide materials such as iron oxide and aluminum oxide. This residual material might be usable as an electrode for supercapacitor due to its material contained. As the base material, the 3D graphene was successfully fabricated by using low pressure chemical vapor deposition (LPCVD) method and afterwards the fly ash was coated on the top of 3D graphene. The chemical properties and surface structure of the electrode material was studied by using Raman spectroscopy and field emission scanning electron spectroscopy (FESEM). 3 electrode systems were used to analyze the cyclic voltammetry results. According to the results, they show that the highest specific capacitance of 3D graphene/fly ash (FA) was about 0.025 F/cm2 at the lowest scan rate of 5 mV/s and it is recommended to use as the supercapacitor electrode.
Title: 3D graphene/fly ash waste material for hybrid supercapacitor electrode: specific capacitance analysis
Description:
AbstractThe performance of supercapacitor energy storage is depending on the type of the material that is used as supercapacitor electrode.
Graphene has been widely used as the base material for a lot of applications due to its remarkable properties.
In this research, we try to combine 3D Graphene with waste material fly ash to be used as the electrode of supercapacitor.
Fly ash is a residual material from burning pulverized coal in electric generation power plants which contain metal oxide materials such as iron oxide and aluminum oxide.
This residual material might be usable as an electrode for supercapacitor due to its material contained.
As the base material, the 3D graphene was successfully fabricated by using low pressure chemical vapor deposition (LPCVD) method and afterwards the fly ash was coated on the top of 3D graphene.
The chemical properties and surface structure of the electrode material was studied by using Raman spectroscopy and field emission scanning electron spectroscopy (FESEM).
3 electrode systems were used to analyze the cyclic voltammetry results.
According to the results, they show that the highest specific capacitance of 3D graphene/fly ash (FA) was about 0.
025 F/cm2 at the lowest scan rate of 5 mV/s and it is recommended to use as the supercapacitor electrode.

Related Results

Review—Methods of Graphene Synthesis and Graphene-Based Electrode Material for Supercapacitor Applications
Review—Methods of Graphene Synthesis and Graphene-Based Electrode Material for Supercapacitor Applications
Energy is an unseen component of the world’s development and expansion. Energy storage, in addition to supplying energy from primary or secondary energy sources, such as renewables...
Trends on the Development of Hybrid Supercapacitor Electrodes from the Combination of Graphene and Polyaniline
Trends on the Development of Hybrid Supercapacitor Electrodes from the Combination of Graphene and Polyaniline
The high demand for efficient energy devices leads to the rapid development of energy storage systems with excellent electrochemical properties, such as long life cycles, high cycl...
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Study of the Design and Mechanical Properties of the Mix Proportion for Desulfurization Gypsum–Fly Ash Flowable Lightweight Soil
Study of the Design and Mechanical Properties of the Mix Proportion for Desulfurization Gypsum–Fly Ash Flowable Lightweight Soil
In order to solve the global problem of bridge head jumping caused by the insufficient compaction of the roadbed in the transition section of highways and bridges, a desulfurizatio...
Influence of the characteristic of input materials on formation and properties of sintered fly ash body
Influence of the characteristic of input materials on formation and properties of sintered fly ash body
Artificial aggregate from sintered fly ash is an example of material, which can be used solely on the basis of fly ash without any additions. However, to ensure optimal progress of...
Strengths of Geo Polymer Concrete by Adding Metakaoline
Strengths of Geo Polymer Concrete by Adding Metakaoline
Based0on the results obtained from this study0,the following Conclusions seems to be valid. The increase0in percentage replacement of Fly Ash with Metakaoline from 0% to 10.00% cau...
A Study of The Characterization of Purified Fly Ash from Xi’an Linyuan Silica Limited
A Study of The Characterization of Purified Fly Ash from Xi’an Linyuan Silica Limited
Coal is a well-known source of electric power generation all over the globe. Pulverized coal combustion and fluidized coal bed combustion are the two conventional methods involved ...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...

Back to Top