Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Feature-Level Camera Style Transfer for Person Re-Identification

View through CrossRef
The person re-identification (re-ID) problem has attracted growing interest in the computer vision community. Most public re-ID datasets are captured by multiple non-overlapping cameras, and the same person may appear dissimilar in different camera views due to variances of illuminations, viewpoints and postures. These differences, collectively referred to as camera style variance, make person re-ID still a challenging problem. Recently, researchers have attempted to solve this problem using generative models. The generative adversarial network (GAN) is widely used for the pose transfer or data augmentation to bridge the camera style gap. However, these methods, mostly based on image-level GAN, require huge computational power during the training of generative models. Furthermore, the training process of GAN is separated from the re-ID model, which makes it hard to achieve a global optimal for both models simultaneously. In this paper, the authors propose to alleviate camera style variance in the re-ID problem by adopting a feature-level Camera Style Transfer (CST) model, which can serve as an intra-class augmentation method and enhance the model robustness against camera style variance. Specifically, the proposed CST method transfers the camera style-related information of input features while preserving the corresponding identity information. Moreover, the training process can be embedded into the re-ID model in an end-to-end manner, which means the proposed approach can be deployed with much less time and memory cost. The proposed approach is verified on several different person re-ID baselines. Extensive experiments show the validity of the proposed CST model and its benefits for re-ID performance on the Market-1501 dataset.
Title: Feature-Level Camera Style Transfer for Person Re-Identification
Description:
The person re-identification (re-ID) problem has attracted growing interest in the computer vision community.
Most public re-ID datasets are captured by multiple non-overlapping cameras, and the same person may appear dissimilar in different camera views due to variances of illuminations, viewpoints and postures.
These differences, collectively referred to as camera style variance, make person re-ID still a challenging problem.
Recently, researchers have attempted to solve this problem using generative models.
The generative adversarial network (GAN) is widely used for the pose transfer or data augmentation to bridge the camera style gap.
However, these methods, mostly based on image-level GAN, require huge computational power during the training of generative models.
Furthermore, the training process of GAN is separated from the re-ID model, which makes it hard to achieve a global optimal for both models simultaneously.
In this paper, the authors propose to alleviate camera style variance in the re-ID problem by adopting a feature-level Camera Style Transfer (CST) model, which can serve as an intra-class augmentation method and enhance the model robustness against camera style variance.
Specifically, the proposed CST method transfers the camera style-related information of input features while preserving the corresponding identity information.
Moreover, the training process can be embedded into the re-ID model in an end-to-end manner, which means the proposed approach can be deployed with much less time and memory cost.
The proposed approach is verified on several different person re-ID baselines.
Extensive experiments show the validity of the proposed CST model and its benefits for re-ID performance on the Market-1501 dataset.

Related Results

On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
<p align="justify"><span style="color: #000000;"><span style="font-family: 'Times New Roman', serif;"><span><span lang="pt-BR">É indiscutível a import...
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
<p><em><span style="font-size: 11.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-langua...
Machine Learning Techniques for Forensic Camera Model Identification and Anti-forensic Attacks
Machine Learning Techniques for Forensic Camera Model Identification and Anti-forensic Attacks
The goal of camera model identification is to determine the manufacturer and model of an image's source camera. Camera model identification is an important task in multimedia foren...
Even Star Decomposition of Complete Bipartite Graphs
Even Star Decomposition of Complete Bipartite Graphs
<p><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">A decomposition (</span><span><span style="font-family: 宋体; font-size: medi...
The Annual Performance Review As A Positive Source For Employee Motivation?
The Annual Performance Review As A Positive Source For Employee Motivation?
<p class="MsoNormal" style="text-align: justify; margin: 0in 0.5in 0pt; mso-pagination: none;"><span style="color: black; font-size: 10pt; mso-themecolor: text1;"><s...
Profil właścicieli gospodarstw agroturystycznych na Roztoczu
Profil właścicieli gospodarstw agroturystycznych na Roztoczu
<p style="text-indent: 1.25cm; margin-bottom: 0cm; letter-spacing: 0.8pt; line-height: 150%;" align="justify"><span style="color: #4f81bd;"><span style="font-family:...

Back to Top