Javascript must be enabled to continue!
Data from Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation
View through CrossRef
<div>Abstract<p>Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross-linking agents (melphalan and cisplatin) through unknown mechanisms. The Fanconi anemia pathway is a DNA damage–activated signaling pathway, which regulates cellular resistance to DNA cross-linking agents. Monoubiquitination and nuclear foci formation of FANCD2 are critical steps of the Fanconi anemia pathway. Here, we show that proteasome function is required for the activation of the Fanconi anemia pathway and for DNA damage signaling. Proteasome inhibitors (bortezomib and MG132) and depletion of 19S and 20S proteasome subunits (PSMD4, PSMD14, and PSMB3) inhibited monoubiquitination and/or nuclear foci formation of FANCD2, whereas depletion of DSS1/SHFM1, a subunit of the 19S proteasome that also directly binds to BRCA2, did not inhibit FANCD2 monoubiquitination or foci formation. On the other hand, DNA damage–signaling processes, such as IR-induced foci formation of phosphorylated ATM (phospho-ATM), 53BP1, NBS1, BRCA1, FANCD2, and RAD51, were delayed in the presence of proteasome inhibitors, whereas ATM autophosphorylation and nuclear foci formation of γH2AX, MDC1, and RPA were not inhibited. Furthermore, persistence of DNA damage and abrogation of the IR-induced G<sub>1</sub>-S checkpoint resulted from proteasome inhibition. In summary, we showed that the proteasome function is required for monoubiquitination of FANCD2, foci formation of 53BP1, phospho-ATM, NBS1, BRCA1, FANCD2, and RAD51. The dependence of specific DNA damage–signaling steps on the proteasome may explain the sensitization of tumor cells to DNA-damaging chemotherapeutic agents by proteasome inhibitors. [Cancer Res 2007;67(15):7395–405]</p></div>
Title: Data from Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation
Description:
<div>Abstract<p>Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross-linking agents (melphalan and cisplatin) through unknown mechanisms.
The Fanconi anemia pathway is a DNA damage–activated signaling pathway, which regulates cellular resistance to DNA cross-linking agents.
Monoubiquitination and nuclear foci formation of FANCD2 are critical steps of the Fanconi anemia pathway.
Here, we show that proteasome function is required for the activation of the Fanconi anemia pathway and for DNA damage signaling.
Proteasome inhibitors (bortezomib and MG132) and depletion of 19S and 20S proteasome subunits (PSMD4, PSMD14, and PSMB3) inhibited monoubiquitination and/or nuclear foci formation of FANCD2, whereas depletion of DSS1/SHFM1, a subunit of the 19S proteasome that also directly binds to BRCA2, did not inhibit FANCD2 monoubiquitination or foci formation.
On the other hand, DNA damage–signaling processes, such as IR-induced foci formation of phosphorylated ATM (phospho-ATM), 53BP1, NBS1, BRCA1, FANCD2, and RAD51, were delayed in the presence of proteasome inhibitors, whereas ATM autophosphorylation and nuclear foci formation of γH2AX, MDC1, and RPA were not inhibited.
Furthermore, persistence of DNA damage and abrogation of the IR-induced G<sub>1</sub>-S checkpoint resulted from proteasome inhibition.
In summary, we showed that the proteasome function is required for monoubiquitination of FANCD2, foci formation of 53BP1, phospho-ATM, NBS1, BRCA1, FANCD2, and RAD51.
The dependence of specific DNA damage–signaling steps on the proteasome may explain the sensitization of tumor cells to DNA-damaging chemotherapeutic agents by proteasome inhibitors.
[Cancer Res 2007;67(15):7395–405]</p></div>.
Related Results
Data from Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation
Data from Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation
<div>Abstract<p>Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross-linking agents (melphalan and cispl...
Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation
Proteasome Function Is Required for DNA Damage Response and Fanconi Anemia Pathway Activation
Abstract
Proteasome inhibitors sensitize tumor cells to DNA-damaging agents, including ionizing radiation (IR), and DNA cross-linking agents (melphalan and cisplatin...
The 26S Proteasome
The 26S Proteasome
Abstract
The 26S proteasome is a large ATP‐dependent protease composed of more than 30 different polypeptide chains. Like the ribosome, the 26S proteasome is assembled fr...
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Genome wide hypomethylation and youth-associated DNA gap reduction promoting DNA damage and senescence-associated pathogenesis
Abstract
Background: Age-associated epigenetic alteration is the underlying cause of DNA damage in aging cells. Two types of youth-associated DNA-protection epigenetic mark...
DdcA antagonizes a bacterial DNA damage checkpoint
DdcA antagonizes a bacterial DNA damage checkpoint
AbstractBacteria coordinate DNA replication and cell division, ensuring that a complete set of genetic material is passed onto the next generation. When bacteria encounter DNA dama...
Abstract 4679: A novel assay to predict susceptibility to tobacco-induced disease.
Abstract 4679: A novel assay to predict susceptibility to tobacco-induced disease.
Abstract
Background: Tobacco misuse is the leading preventable cause of morbidity and mortality in the world. Tobacco-induced DNA damage is one of the main mechanism...
Abstract 1071: Impact of AR activation status on the DNA damage response.
Abstract 1071: Impact of AR activation status on the DNA damage response.
Abstract
Recent evidence implicates the androgen receptor (AR) as a critical modulator of the DNA damage response in prostate cancer. Treatment for locally advanced ...
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Echinococcus granulosus in Environmental Samples: A Cross-Sectional Molecular Study
Abstract
Introduction
Echinococcosis, caused by tapeworms of the Echinococcus genus, remains a significant zoonotic disease globally. The disease is particularly prevalent in areas...

