Javascript must be enabled to continue!
Implementasi Algoritma K-Nearest Neighbour dalam Menganalisis Sentimen Terhadap Program Merdeka Belajar Kampus Merdeka (MBKM)
View through CrossRef
K-Nearest Neighbor Algorithm Implementation in sentiment analysis towards Merdeka Belajar Kampus Merdeka (MBKM) Program. Merdeka Belajar Kampus Merdeka (MBKM) is a program that supports students to improve their skills by having direct experience in the work environment to prepare for competition and a future career. MBKM program has been implemented by Indonesia's Ministry of Education, Culture, Research, and Technology (Kemendikbudristek) since 2020. Every policy needs to be evaluated; a simple evaluation can be done through sentiment analysis to determine public responses to the MBKM program. The results are used as suggestions for program improvement. Sentiment analysis is done by applying the Natural Language Processing (NLP) algorithm to process crawled data from Twitter, then classified using the K-NN Algorithm. Based on the results, the sentiment is neutral. This illustrates that people are only partially interested in the MBKM program policy. The accuracy of the classification model using the K-NN algorithm is 95%, and an F1-score value of 0.96 for the classification model with a ratio of 80% training data and 20% test data.
Universitas Dharma Andalas
Title: Implementasi Algoritma K-Nearest Neighbour dalam Menganalisis Sentimen Terhadap Program Merdeka Belajar Kampus Merdeka (MBKM)
Description:
K-Nearest Neighbor Algorithm Implementation in sentiment analysis towards Merdeka Belajar Kampus Merdeka (MBKM) Program.
Merdeka Belajar Kampus Merdeka (MBKM) is a program that supports students to improve their skills by having direct experience in the work environment to prepare for competition and a future career.
MBKM program has been implemented by Indonesia's Ministry of Education, Culture, Research, and Technology (Kemendikbudristek) since 2020.
Every policy needs to be evaluated; a simple evaluation can be done through sentiment analysis to determine public responses to the MBKM program.
The results are used as suggestions for program improvement.
Sentiment analysis is done by applying the Natural Language Processing (NLP) algorithm to process crawled data from Twitter, then classified using the K-NN Algorithm.
Based on the results, the sentiment is neutral.
This illustrates that people are only partially interested in the MBKM program policy.
The accuracy of the classification model using the K-NN algorithm is 95%, and an F1-score value of 0.
96 for the classification model with a ratio of 80% training data and 20% test data.
Related Results
ARTIKEL ALGORITMA PEMROGRAMAN SERI MINTA UBA HASIBUAN
ARTIKEL ALGORITMA PEMROGRAMAN SERI MINTA UBA HASIBUAN
Algoritma merupakan akar dari sebuah sistem yang terbentuk dalam dunia pemrograman.Melalui serangkaian cara yang masuk akal dan teratur, sebuah algoritma dapat menyelesaikan suatu ...
Persepsi Mahasiswa Program Studi Ekonomi Syariah terhadap Implementasi Merdeka Belajar Kampus Merdeka
Persepsi Mahasiswa Program Studi Ekonomi Syariah terhadap Implementasi Merdeka Belajar Kampus Merdeka
Abstract. Independent Learning Campus Independent (MBKM) is a new policy issued by the Minister of Education and Culture of the Republic of Indonesia in 2019 and becomes a new guid...
Dampak Merdeka Belajar Kampus Merdeka Terhadap Kualitas Mahasiswa
Dampak Merdeka Belajar Kampus Merdeka Terhadap Kualitas Mahasiswa
<p><em>Kebijakan Merdeka Belajar Kampus Merdeka (MBKM) telah diluncurkan oleh Menteri Pendidikan dan Kebudayaan Indonesia pada tahun 2020. Universitas Al Azhar Indonesi...
Persepsi Pelaksanaan Program Merdeka Belajar Kampus Merdeka: Hasil Eksplorasi Perasaan Mahasiswa
Persepsi Pelaksanaan Program Merdeka Belajar Kampus Merdeka: Hasil Eksplorasi Perasaan Mahasiswa
Penelitian ini memuat implementasi program merdeka belajar kampus merdeka yang masih memerlukan evaluasi sebagai bahan perbaikan terhadap kendala yang ditemukan pada pelaksanaannya...
Analisis Sentimen Berdasarkan Hasil Review Lokasi Google Map Menggunakan Natural Language Toolkit TextBlob dan Naïve Bayes
Analisis Sentimen Berdasarkan Hasil Review Lokasi Google Map Menggunakan Natural Language Toolkit TextBlob dan Naïve Bayes
Metode analisa sentimen adalah metode yang digunakan untuk memberikan pemahaman tentang perasaan atau opini yang terkandung dalam suatu teks. Seiring dengan perkembangan teknologi ...
ANALISIS SENTIMEN MASYARAKAT TERHADAP PEMILIHAN BUPATI CIREBON 2024 BERDASARKAN KOMENTAR PADA VIDEO DEBAT DI YOUTUBE DENGAN METODE NAÏVE BAYES
ANALISIS SENTIMEN MASYARAKAT TERHADAP PEMILIHAN BUPATI CIREBON 2024 BERDASARKAN KOMENTAR PADA VIDEO DEBAT DI YOUTUBE DENGAN METODE NAÏVE BAYES
Metode Naïve Bayes digunakan sebagai algoritma utama untuk mengklasifikasikan komentar ke dalam kategori sentimen positif, negatif, dan . Maka dilakukan dalam beberapa tahapan, ant...
Klasifikasi Sentimen Masyarakat terhadap Presiden Indonesia Menggunakan Metode Naive Bayes
Klasifikasi Sentimen Masyarakat terhadap Presiden Indonesia Menggunakan Metode Naive Bayes
Abstract. Social media platform X has become an important platform for expressing public opinion, particularly in the political context, including the 2024 Presidential Election in...
Pengaruh Self Determination terhadap Work Engagement pada Mahasiswa Its yang Mengikuti Magang
Pengaruh Self Determination terhadap Work Engagement pada Mahasiswa Its yang Mengikuti Magang
Abstract. The Minister of Education and Culture (Kemendikbud) held an internship program called MBKM Kampus Merdeka: Program Magang Kampus Merdeka. The purpose of this program is t...

