Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Design of embedded tri-color shift device

View through CrossRef
To improve the performance of existing guided-mode resonance (GMR) anti-counterfeiting grating, a tri-color shift device based on a one-dimensional (1D) singly periodic rectangular structure and ZnS film is reported. By turning the azimuths, the proposed device exhibits tri-color shifts of blue, green, and red for both TE and TM polarizations simultaneously. As the natural light can be considered as a superposition of TE and TM polarizations, in order to achieve the azimuth-tuned tri-color shifts of blue, green, and red, the wavebands and magnitudes of the reflection peaks for TE and TM polarizations should be designed at three azimuths, that is, at the first azimuth, high reflectivity in blue band and low reflectivity in green and red band should be reached; at the second azimuth, high reflectivity in green band and low reflectivity in blue and red band should be reached; at the third azimuth, high reflectivity in red band and low reflectivity in blue and green band should be reached. Considering these design goals, the evaluation function is established. By making the rigorous coupled wave analysis, the 0th reflectivity of the device can be numerically solved, which is relative to the incident light parameters (, , , ), the structure parameters (f, T, dg, dc), as well as the refractive indices of all the regions (ni, nc, ns). There is no analytical relationship between these parameters and the 0th reflectivity. So genetic algorithm is used to optimize the evaluation function, and then the optimal parameters of the tri-color shift device are obtained. When T=431.5 nm, dg=124.2 nm, dc=13.1 nm, f=0.5, and =45, at azimuth angle 0, natural light has reflection peaks at 468 nm and 442 nm; at azimuth angle 58, natural light has reflection peaks at 557 nm and 521 nm; at azimuth angle 90, natural light has reflection peaks at 690 nm, 673 nm, 650 nm and 644 nm. As a result, the device exhibits blue, green and red color responses at 0, 58 and 90 azimuth, respectively. The research results are explained in physics. Furthermore, the influences of key parameters on the reflection peaks are investigated. It is found that the reflection peaks of blue, green and red light are red-shifted with the increase of device period, groove depth, coating thickness and the decrease of incident angle. When the period, depth, thickness, and the incident angle are changed by 4.6% ( 20 nm), 27.4% ( 34 nm), 100% ( 13.1 nm), and 11.1% ( 5) with respect to the original designs, respectively, the device can well keep the color-shift effects of blue, green and red. The results above are meaningful in the designing, manufacturing and testing of the device. Compared with the existing GMR anti-counterfeiting grating, the tri-color shift device has high anti-counterfeit and appreciative value because of the harder designing and richer visual effect. Moreover, the 1D simple periodical structure is good for the manufacture of the high-precision master masks, and the device can be massively produced at low cost by the traditional embossing and evaporating technique in the laser holography industry. This tri-color shift device breaks through the limit of bi-color shifting technology, and may have great applications in the field of the optically variable image security.
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Title: Design of embedded tri-color shift device
Description:
To improve the performance of existing guided-mode resonance (GMR) anti-counterfeiting grating, a tri-color shift device based on a one-dimensional (1D) singly periodic rectangular structure and ZnS film is reported.
By turning the azimuths, the proposed device exhibits tri-color shifts of blue, green, and red for both TE and TM polarizations simultaneously.
As the natural light can be considered as a superposition of TE and TM polarizations, in order to achieve the azimuth-tuned tri-color shifts of blue, green, and red, the wavebands and magnitudes of the reflection peaks for TE and TM polarizations should be designed at three azimuths, that is, at the first azimuth, high reflectivity in blue band and low reflectivity in green and red band should be reached; at the second azimuth, high reflectivity in green band and low reflectivity in blue and red band should be reached; at the third azimuth, high reflectivity in red band and low reflectivity in blue and green band should be reached.
Considering these design goals, the evaluation function is established.
By making the rigorous coupled wave analysis, the 0th reflectivity of the device can be numerically solved, which is relative to the incident light parameters (, , , ), the structure parameters (f, T, dg, dc), as well as the refractive indices of all the regions (ni, nc, ns).
There is no analytical relationship between these parameters and the 0th reflectivity.
So genetic algorithm is used to optimize the evaluation function, and then the optimal parameters of the tri-color shift device are obtained.
When T=431.
5 nm, dg=124.
2 nm, dc=13.
1 nm, f=0.
5, and =45, at azimuth angle 0, natural light has reflection peaks at 468 nm and 442 nm; at azimuth angle 58, natural light has reflection peaks at 557 nm and 521 nm; at azimuth angle 90, natural light has reflection peaks at 690 nm, 673 nm, 650 nm and 644 nm.
As a result, the device exhibits blue, green and red color responses at 0, 58 and 90 azimuth, respectively.
The research results are explained in physics.
Furthermore, the influences of key parameters on the reflection peaks are investigated.
It is found that the reflection peaks of blue, green and red light are red-shifted with the increase of device period, groove depth, coating thickness and the decrease of incident angle.
When the period, depth, thickness, and the incident angle are changed by 4.
6% ( 20 nm), 27.
4% ( 34 nm), 100% ( 13.
1 nm), and 11.
1% ( 5) with respect to the original designs, respectively, the device can well keep the color-shift effects of blue, green and red.
The results above are meaningful in the designing, manufacturing and testing of the device.
Compared with the existing GMR anti-counterfeiting grating, the tri-color shift device has high anti-counterfeit and appreciative value because of the harder designing and richer visual effect.
Moreover, the 1D simple periodical structure is good for the manufacture of the high-precision master masks, and the device can be massively produced at low cost by the traditional embossing and evaporating technique in the laser holography industry.
This tri-color shift device breaks through the limit of bi-color shifting technology, and may have great applications in the field of the optically variable image security.

Related Results

Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
<p align="justify"><span style="color: #000000;"><span style="font-family: 'Times New Roman', serif;"><span><span lang="pt-BR">É indiscutível a import...
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Design
Design
Conventional definitions of design rarely capture its reach into our everyday lives. The Design Council, for example, estimates that more than 2.5 million people use design-related...
Boja kao izlagački aspekt narativnoga filma
Boja kao izlagački aspekt narativnoga filma
The dissertation, titled Colour as an Expository Aspect of the Narrative Film, explores how color shapes the narrative, aesthetic, and emotional dimensions of film. Analyzing the h...
Mechanisms of action of thioredoxin reductase inhibitors in the context of cancer
Mechanisms of action of thioredoxin reductase inhibitors in the context of cancer
<p dir="ltr">The increased understanding of the role of redox homeostasis in cancer survival and progression has placed a spotlight on studying the perturbations in redox sig...
Mechanisms of action of thioredoxin reductase inhibitors in the context of cancer
Mechanisms of action of thioredoxin reductase inhibitors in the context of cancer
<p dir="ltr">The increased understanding of the role of redox homeostasis in cancer survival and progression has placed a spotlight on studying the perturbations in redox sig...
Software driven approach for Embedded Devices
Software driven approach for Embedded Devices
This paper presents the possible new design paradigm that emerged during the author’s design of an embedded communication device for Croatian Navy. Prior to codesign techniques tha...
ĐẶC ĐIỂM ĐAU Ở NGƯỜI CAO TUỔI MẮC SA SÚT TRÍ TUỆ
ĐẶC ĐIỂM ĐAU Ở NGƯỜI CAO TUỔI MẮC SA SÚT TRÍ TUỆ
Đặt vấn đề: Đau là một trong những vấn đề sức khỏe thường gặp và quan trọng đối với bệnh nhân sa sút trí tuệ. Tuy nhiên, do khả năng giao tiếp hạn chế nên nỗi đau của họ thường bị ...

Back to Top