Javascript must be enabled to continue!
Factoid question answering for spoken documents
View through CrossRef
In this dissertation, we present a factoid question answering system, specifically tailored for Question Answering (QA) on spoken documents.
This work explores, for the first time, which techniques can be robustly adapted from the usual QA on written documents to the more difficult spoken documents scenario. More specifically, we study new information retrieval (IR) techniques designed for speech, and utilize several levels of linguistic information for the speech-based QA task. These include named-entity detection with phonetic information, syntactic parsing applied to speech transcripts, and the use of coreference resolution.
Our approach is largely based on supervised machine learning techniques, with special focus on the answer extraction step, and makes little use of handcrafted knowledge. Consequently, it should be easily adaptable to other domains and languages.
In the work resulting of this Thesis, we have impulsed and coordinated the creation of an evaluation framework for the task of QA on spoken documents. The framework, named QAst, provides multi-lingual corpora, evaluation questions, and answers key. These corpora have been used in the QAst evaluation that was held in the CLEF workshop for the years 2007, 2008 and 2009, thus helping the developing of state-of-the-art techniques for this particular topic.
The presentend QA system and all its modules are extensively evaluated on the European Parliament Plenary Sessions
English corpus composed of manual transcripts and automatic transcripts obtained by three different Automatic Speech Recognition (ASR) systems that exhibit significantly different word error rates. This data belongs to the CLEF 2009 track for QA on speech transcripts.
The main results confirm that syntactic information is very useful for learning to rank question candidates, improving results on both manual and automatic transcripts unless the ASR quality is very low. Overall, the performance of our system is comparable or better than the state-of-the-art on this corpus, confirming the validity of our approach.
En aquesta Tesi, presentem un sistema de Question Answering (QA) factual, especialment ajustat per treballar amb documents orals.
En el desenvolupament explorem, per primera vegada, quines tècniques de les habitualment emprades en QA per documents escrit són suficientment robustes per funcionar en l'escenari més difícil de documents orals. Amb més especificitat, estudiem nous mètodes de Information Retrieval (IR) dissenyats per tractar amb la veu, i utilitzem diversos nivells d'informació linqüística. Entre aquests s'inclouen, a saber: detecció de Named Entities utilitzant informació fonètica, "parsing" sintàctic aplicat a transcripcions de veu, i també l'ús d'un sub-sistema de detecció i resolució de la correferència.
La nostra aproximació al problema es recolza en gran part en tècniques supervisades de Machine Learning, estant aquestes enfocades especialment cap a la part d'extracció de la resposta, i fa servir la menor quantitat possible de coneixement creat per humans. En conseqüència, tot el procés de QA pot ser adaptat a altres dominis o altres llengües amb relativa facilitat.
Un dels resultats addicionals de la feina darrere d'aquesta Tesis ha estat que hem impulsat i coordinat la creació d'un marc d'avaluació de la taska de QA en documents orals. Aquest marc de treball, anomenat QAst (Question Answering on Speech Transcripts), proporciona un corpus de documents orals multi-lingüe, uns conjunts de preguntes d'avaluació, i les respostes correctes d'aquestes. Aquestes dades han estat utilitzades en les evaluacionis QAst que han tingut lloc en el si de les conferències CLEF en els anys 2007, 2008 i 2009; d'aquesta manera s'ha promogut i ajudat a la creació d'un estat-de-l'art de tècniques adreçades a aquest problema en particular.
El sistema de QA que presentem i tots els seus particulars sumbòduls, han estat avaluats extensivament utilitzant el corpus EPPS (transcripcions de les Sessions Plenaries del Parlament Europeu) en anglès, que cónté transcripcions manuals de tots els discursos i també transcripcions automàtiques obtingudes mitjançant tres reconeixedors automàtics de la parla (ASR) diferents. Els reconeixedors tenen característiques i resultats diferents que permetes una avaluació quantitativa i qualitativa de la tasca. Aquestes dades pertanyen a l'avaluació QAst del 2009.
Els resultats principals de la nostra feina confirmen que la informació sintàctica és mol útil per aprendre automàticament a valorar la plausibilitat de les respostes candidates, millorant els resultats previs tan en transcripcions manuals com transcripcions automàtiques, descomptat que la qualitat de l'ASR sigui molt baixa. En general, el rendiment del nostre sistema és comparable o millor que els altres sistemes pertanyents a l'estat-del'art, confirmant així la validesa de la nostra aproximació.
Title: Factoid question answering for spoken documents
Description:
In this dissertation, we present a factoid question answering system, specifically tailored for Question Answering (QA) on spoken documents.
This work explores, for the first time, which techniques can be robustly adapted from the usual QA on written documents to the more difficult spoken documents scenario.
More specifically, we study new information retrieval (IR) techniques designed for speech, and utilize several levels of linguistic information for the speech-based QA task.
These include named-entity detection with phonetic information, syntactic parsing applied to speech transcripts, and the use of coreference resolution.
Our approach is largely based on supervised machine learning techniques, with special focus on the answer extraction step, and makes little use of handcrafted knowledge.
Consequently, it should be easily adaptable to other domains and languages.
In the work resulting of this Thesis, we have impulsed and coordinated the creation of an evaluation framework for the task of QA on spoken documents.
The framework, named QAst, provides multi-lingual corpora, evaluation questions, and answers key.
These corpora have been used in the QAst evaluation that was held in the CLEF workshop for the years 2007, 2008 and 2009, thus helping the developing of state-of-the-art techniques for this particular topic.
The presentend QA system and all its modules are extensively evaluated on the European Parliament Plenary Sessions
English corpus composed of manual transcripts and automatic transcripts obtained by three different Automatic Speech Recognition (ASR) systems that exhibit significantly different word error rates.
This data belongs to the CLEF 2009 track for QA on speech transcripts.
The main results confirm that syntactic information is very useful for learning to rank question candidates, improving results on both manual and automatic transcripts unless the ASR quality is very low.
Overall, the performance of our system is comparable or better than the state-of-the-art on this corpus, confirming the validity of our approach.
En aquesta Tesi, presentem un sistema de Question Answering (QA) factual, especialment ajustat per treballar amb documents orals.
En el desenvolupament explorem, per primera vegada, quines tècniques de les habitualment emprades en QA per documents escrit són suficientment robustes per funcionar en l'escenari més difícil de documents orals.
Amb més especificitat, estudiem nous mètodes de Information Retrieval (IR) dissenyats per tractar amb la veu, i utilitzem diversos nivells d'informació linqüística.
Entre aquests s'inclouen, a saber: detecció de Named Entities utilitzant informació fonètica, "parsing" sintàctic aplicat a transcripcions de veu, i també l'ús d'un sub-sistema de detecció i resolució de la correferència.
La nostra aproximació al problema es recolza en gran part en tècniques supervisades de Machine Learning, estant aquestes enfocades especialment cap a la part d'extracció de la resposta, i fa servir la menor quantitat possible de coneixement creat per humans.
En conseqüència, tot el procés de QA pot ser adaptat a altres dominis o altres llengües amb relativa facilitat.
Un dels resultats addicionals de la feina darrere d'aquesta Tesis ha estat que hem impulsat i coordinat la creació d'un marc d'avaluació de la taska de QA en documents orals.
Aquest marc de treball, anomenat QAst (Question Answering on Speech Transcripts), proporciona un corpus de documents orals multi-lingüe, uns conjunts de preguntes d'avaluació, i les respostes correctes d'aquestes.
Aquestes dades han estat utilitzades en les evaluacionis QAst que han tingut lloc en el si de les conferències CLEF en els anys 2007, 2008 i 2009; d'aquesta manera s'ha promogut i ajudat a la creació d'un estat-de-l'art de tècniques adreçades a aquest problema en particular.
El sistema de QA que presentem i tots els seus particulars sumbòduls, han estat avaluats extensivament utilitzant el corpus EPPS (transcripcions de les Sessions Plenaries del Parlament Europeu) en anglès, que cónté transcripcions manuals de tots els discursos i també transcripcions automàtiques obtingudes mitjançant tres reconeixedors automàtics de la parla (ASR) diferents.
Els reconeixedors tenen característiques i resultats diferents que permetes una avaluació quantitativa i qualitativa de la tasca.
Aquestes dades pertanyen a l'avaluació QAst del 2009.
Els resultats principals de la nostra feina confirmen que la informació sintàctica és mol útil per aprendre automàticament a valorar la plausibilitat de les respostes candidates, millorant els resultats previs tan en transcripcions manuals com transcripcions automàtiques, descomptat que la qualitat de l'ASR sigui molt baixa.
En general, el rendiment del nostre sistema és comparable o millor que els altres sistemes pertanyents a l'estat-del'art, confirmant així la validesa de la nostra aproximació.
Related Results
On the reliability of factoid question answering evaluation
On the reliability of factoid question answering evaluation
This paper compares some existing evaluation metrics for factoid question answering (QA) from the viewpoint of stability and sensitivity, using the NTCIR-4 QAC2 Japanese factoid QA...
A Conversational Chatbot Based on Kowledge-Graphs for Factoid Medical Questions
A Conversational Chatbot Based on Kowledge-Graphs for Factoid Medical Questions
In the last years, the interest about enhancing the interface usability of applications has strongly increased, focusing, in particular, on chatbots, i.e. conversational agent that...
Interactive Question Answering
Interactive Question Answering
The increasing amount of information available online has led to the development of technologies that help to deal with it. One of them is Interactive Question Answering (IQA), a r...
Spoken Word Recognition
Spoken Word Recognition
The core question that spoken word recognition research attempts to address is: How does a phonological word-form activate the corresponding lexical representation that is stored i...
Spoken vs. Written or Dialogue vs. Non-Dialogue? Frequency Analysis of Verbs, Nouns and Prepositional Phrases in Bulgarian
Spoken vs. Written or Dialogue vs. Non-Dialogue? Frequency Analysis of Verbs, Nouns and Prepositional Phrases in Bulgarian
In linguistics, the difference between spoken and written language is often interpreted in terms of frequency, meaning the extent of the likelihood that some constructions will occ...
Written rather than spoken language experience predicts speed of spoken word recognition
Written rather than spoken language experience predicts speed of spoken word recognition
Cultural experiences can be a powerful influence on human cognition. Here, we asked whether the experience with written language, a human cultural invention, predicts the speed of ...
ALBERT-QM: An ALBERT Based Method for Chinese Health Related Question Matching (Preprint)
ALBERT-QM: An ALBERT Based Method for Chinese Health Related Question Matching (Preprint)
BACKGROUND
Question answering (QA) system is widely used in web-based health-care applications. Health consumers likely asked similar questions in various n...
Aspects of Authentic Spoken German: Awareness and Recognition of Elision in the German Classroom
Aspects of Authentic Spoken German: Awareness and Recognition of Elision in the German Classroom
This work discusses the importance of spoken German in classroom instruction. The paper examines the nature of natural spoken language as opposed to written language. We find a gen...

