Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Neural network-based classification of X-ray fluorescence spectra of artists’ pigments: an approach leveraging a synthetic dataset created using the fundamental parameters method

View through CrossRef
AbstractX-ray fluorescence (XRF) spectroscopy is an analytical technique used to identify chemical elements that has found widespread use in the cultural heritage sector to characterise artists' materials including the pigments in paintings. It generates a spectrum with characteristic emission lines relating to the elements present, which is interpreted by an expert to understand the materials therein. Convolutional neural networks (CNNs) are an effective method for automating such classification tasks—an increasingly important feature as XRF datasets continue to grow in size—but they require large libraries that capture the natural variation of each class for training. As an alternative to having to acquire such a large library of XRF spectra of artists' materials a physical model, the Fundamental Parameters (FP) method, was used to generate a synthetic dataset of XRF spectra representative of pigments typically encountered in Renaissance paintings that could then be used to train a neural network. The synthetic spectra generated—modelled as single layers of individual pigments—had characteristic element lines closely matching those found in real XRF spectra. However, as the method did not incorporate effects from the X-ray source, the synthetic spectra lacked the continuum and Rayleigh and Compton scatter peaks. Nevertheless, the network trained on the synthetic dataset achieved 100% accuracy when tested on synthetic XRF data. Whilst this initial network only attained 55% accuracy when tested on real XRF spectra obtained from reference samples, applying transfer learning using a small quantity of such real XRF spectra increased the accuracy to 96%. Due to these promising results, the network was also tested on select data acquired during macro XRF (MA-XRF) scanning of a painting to challenge the model with noisier spectra Although only tested on spectra from relatively simple paint passages, the results obtained suggest that the FP method can be used to create accurate synthetic XRF spectra of individual artists' pigments, free from X-ray tube effects, on which a classification model could be trained for application to real XRF data and that the method has potential to be extended to deal with more complex paint mixtures and stratigraphies.
Title: Neural network-based classification of X-ray fluorescence spectra of artists’ pigments: an approach leveraging a synthetic dataset created using the fundamental parameters method
Description:
AbstractX-ray fluorescence (XRF) spectroscopy is an analytical technique used to identify chemical elements that has found widespread use in the cultural heritage sector to characterise artists' materials including the pigments in paintings.
It generates a spectrum with characteristic emission lines relating to the elements present, which is interpreted by an expert to understand the materials therein.
Convolutional neural networks (CNNs) are an effective method for automating such classification tasks—an increasingly important feature as XRF datasets continue to grow in size—but they require large libraries that capture the natural variation of each class for training.
As an alternative to having to acquire such a large library of XRF spectra of artists' materials a physical model, the Fundamental Parameters (FP) method, was used to generate a synthetic dataset of XRF spectra representative of pigments typically encountered in Renaissance paintings that could then be used to train a neural network.
The synthetic spectra generated—modelled as single layers of individual pigments—had characteristic element lines closely matching those found in real XRF spectra.
However, as the method did not incorporate effects from the X-ray source, the synthetic spectra lacked the continuum and Rayleigh and Compton scatter peaks.
Nevertheless, the network trained on the synthetic dataset achieved 100% accuracy when tested on synthetic XRF data.
Whilst this initial network only attained 55% accuracy when tested on real XRF spectra obtained from reference samples, applying transfer learning using a small quantity of such real XRF spectra increased the accuracy to 96%.
Due to these promising results, the network was also tested on select data acquired during macro XRF (MA-XRF) scanning of a painting to challenge the model with noisier spectra Although only tested on spectra from relatively simple paint passages, the results obtained suggest that the FP method can be used to create accurate synthetic XRF spectra of individual artists' pigments, free from X-ray tube effects, on which a classification model could be trained for application to real XRF data and that the method has potential to be extended to deal with more complex paint mixtures and stratigraphies.

Related Results

Optimising tool wear and workpiece condition monitoring via cyber-physical systems for smart manufacturing
Optimising tool wear and workpiece condition monitoring via cyber-physical systems for smart manufacturing
Smart manufacturing has been developed since the introduction of Industry 4.0. It consists of resource sharing and networking, predictive engineering, and material and data analyti...
Phycobiliprotein production with cyanobacteria-rich cultures and microbiomes
Phycobiliprotein production with cyanobacteria-rich cultures and microbiomes
(English) Phycobiliproteins are pigments found in cyanobacteria, which are exploited in the food, cosmetic, and pharmaceutical industries. However, the large-scale production of th...
Neural Networks for Quality Sorting of Agricultural Produce
Neural Networks for Quality Sorting of Agricultural Produce
The objectives of this project were to develop procedures and models, based on neural networks, for quality sorting of agricultural produce. Two research teams, one in Purdue Unive...
Improving Medical Document Classification via Feature Engineering
Improving Medical Document Classification via Feature Engineering
<p dir="ltr">Document classification (DC) is the task of assigning the predefined labels to unseen documents by utilizing the model trained on the available labeled documents...
Simplified access of asteroid spectral data and metadata using classy
Simplified access of asteroid spectral data and metadata using classy
Remote-sensing spectroscopy is the most efficient observational technique to characterise the surface composition of asteroids within a reasonable timeframe. While photometry allow...
Inversion using adaptive physics‐based neural network: Application to magnetotelluric inversion
Inversion using adaptive physics‐based neural network: Application to magnetotelluric inversion
ABSTRACTA new trend to solve geophysical problems aims to combine the advantages of deterministic inversion with neural network inversion. The neural networks applied to geophysica...
Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field
Classifying Wheat Hyperspectral Pixels of Healthy Heads and Fusarium Head Blight Disease Using a Deep Neural Network in the Wild Field
Classification of healthy and diseased wheat heads in a rapid and non-destructive manner for the early diagnosis of Fusarium head blight disease research is difficult. Our work app...
Fuzzy Chaotic Neural Networks
Fuzzy Chaotic Neural Networks
An understanding of the human brain’s local function has improved in recent years. But the cognition of human brain’s working process as a whole is still obscure. Both fuzzy logic ...

Back to Top