Javascript must be enabled to continue!
Sorption behavior of Co-radionuclides from radioactive waste solution on graphene enhanced by immobilized sugarcane and carboxy methyl cellulose
View through CrossRef
Abstract
Novel graphene-sugarcane bagasse-carboxy methyl cellulose (GSCCMC) nanocomposite have been synthesized via freeze-drying technique after preparation of graphene from natural graphite by modified Hummer method and evaluated as adsorbent for sorption of 60Co(II)-radionuclides from radioactive waste solution and real wastewater samples using a series of batch adsorption experiments and compared with graphene. The synthesized (GSCCMC) nanocomposite was characterized using Fourier transformer infrared (FT-IR), Transmission electron microscope (TEM), Thermal analysis, Elemental analysis, Specific Surface area (SBET) and X-ray diffraction (XRD), which confirmed the successful formation of graphene-sugarcane bagasse-carboxy methyl cellulose (GSCCMC) nanocomposite. Different parameters affecting the removal process including pH, contact time and metal ion concentration were investigated. Isotherm and kinetic models were studied. Adsorption kinetics described well by pseudo-second-order. The Langmuir model provides a better fitting than the Freundlich and Temkin models and the maximum adsorption capacity from Langmuir model were found to be 0.4186 and 0.2424 mol/g for (GSCCMC) nanocomposite and graphene (G), respectively. From Dubinin–Radushkevich (D–R) isotherm model, the sorption energy (E)-values of graphene (G) and (GSCCMC) are 10.16 and 10.564 kJ/mol, respectively and this mean the adsorption of 60Co(II)-radionuclides can be explained by chemisorption process, which is characteristic of ion exchange. Desorption of 60Co(II)-radionuclides from loaded (GSCCMC) nanocomposite was studied using different eluents (0.1 M HCl, 0.1 M NaOH and H2O). The data illustrated that 0.1 M HCl solution showed maximum desorption percent (D%) than other eluents. The economic viability of the adsorption process for the removal of 60Co(II) from wastewater samples was studied. The result indicated that the cost for preparation of (GSCCMC) nanocomposite is lower than for (GSCCMC) nanocomposite that prepared from purchase the graphene powder. Therefore, the synthesized (GSCCMC) nanocomposite was used as regenerated material for sorption of 60Co(II)-radionuclides from aqueous solutions and can be used for many times as a cost-effective and environmental friendly material in wastewater treatment.
Walter de Gruyter GmbH
Title: Sorption behavior of Co-radionuclides from radioactive waste solution on graphene enhanced by immobilized sugarcane and carboxy methyl cellulose
Description:
Abstract
Novel graphene-sugarcane bagasse-carboxy methyl cellulose (GSCCMC) nanocomposite have been synthesized via freeze-drying technique after preparation of graphene from natural graphite by modified Hummer method and evaluated as adsorbent for sorption of 60Co(II)-radionuclides from radioactive waste solution and real wastewater samples using a series of batch adsorption experiments and compared with graphene.
The synthesized (GSCCMC) nanocomposite was characterized using Fourier transformer infrared (FT-IR), Transmission electron microscope (TEM), Thermal analysis, Elemental analysis, Specific Surface area (SBET) and X-ray diffraction (XRD), which confirmed the successful formation of graphene-sugarcane bagasse-carboxy methyl cellulose (GSCCMC) nanocomposite.
Different parameters affecting the removal process including pH, contact time and metal ion concentration were investigated.
Isotherm and kinetic models were studied.
Adsorption kinetics described well by pseudo-second-order.
The Langmuir model provides a better fitting than the Freundlich and Temkin models and the maximum adsorption capacity from Langmuir model were found to be 0.
4186 and 0.
2424 mol/g for (GSCCMC) nanocomposite and graphene (G), respectively.
From Dubinin–Radushkevich (D–R) isotherm model, the sorption energy (E)-values of graphene (G) and (GSCCMC) are 10.
16 and 10.
564 kJ/mol, respectively and this mean the adsorption of 60Co(II)-radionuclides can be explained by chemisorption process, which is characteristic of ion exchange.
Desorption of 60Co(II)-radionuclides from loaded (GSCCMC) nanocomposite was studied using different eluents (0.
1 M HCl, 0.
1 M NaOH and H2O).
The data illustrated that 0.
1 M HCl solution showed maximum desorption percent (D%) than other eluents.
The economic viability of the adsorption process for the removal of 60Co(II) from wastewater samples was studied.
The result indicated that the cost for preparation of (GSCCMC) nanocomposite is lower than for (GSCCMC) nanocomposite that prepared from purchase the graphene powder.
Therefore, the synthesized (GSCCMC) nanocomposite was used as regenerated material for sorption of 60Co(II)-radionuclides from aqueous solutions and can be used for many times as a cost-effective and environmental friendly material in wastewater treatment.
Related Results
Preparation of Graphene Fibers
Preparation of Graphene Fibers
Graphene owns intriguing properties in electronic, thermal, and mechanic with unique two-dimension (2D) monolayer structure. The new member of carbon family has not only attracted ...
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Characterization and preliminary application of top-gated graphene ion-sensitive field effect transistors
Graphene, a 2-dimensional material, has received increasing attention due to its unique physicochemical properties (high surface area, excellent conductivity, and high mechanical s...
Nutrient recovery from waste water treatment plant by sorption processes : technical and economic analysis
Nutrient recovery from waste water treatment plant by sorption processes : technical and economic analysis
In the last years has been performed a huge number of research related to nutrients (mainly N and P) recovery from waste water in order to promote their reuse and also to avoid eut...
Effective Weed Management Strategies for Sustainable Cultivation of Sugarcane (Saccharum officinarum L.): A Comprehensive Review
Effective Weed Management Strategies for Sustainable Cultivation of Sugarcane (Saccharum officinarum L.): A Comprehensive Review
Sugarcane (Saccharum officinarum L.) is a significant crop in global agriculture, often referred to as "wonder cane" for its slow yet robust growth. Despite its importance, sugarca...
Analysis of Furrow Irrigation Design Parameters On Sugarcane Growth And Yield Parameters Under Wonji Shoa Climatic Condition
Analysis of Furrow Irrigation Design Parameters On Sugarcane Growth And Yield Parameters Under Wonji Shoa Climatic Condition
Abstract
Sugarcane is one of the important industrial crops produced all over the tropical areas. Sugarcane production is highly expanding in developing countries like Ethi...
Preparation and Characterization of Cellulose and Microcrystalline Cellulose from Sugarcane Bagasse and Assessment of the Microcrystalline Cellulose as a Directly Compressible Excipient
Preparation and Characterization of Cellulose and Microcrystalline Cellulose from Sugarcane Bagasse and Assessment of the Microcrystalline Cellulose as a Directly Compressible Excipient
Cellulose, the most abundant biomass material in nature finds wide applications in the pharmaceutical industry. Sugarcane bagasse (SCB) is one of the main agricultural lignocellul...
Successive Intercropping of Potato and Mungbean with Sugarcane
Successive Intercropping of Potato and Mungbean with Sugarcane
The experiment was carried out at the Bangladesh Sugarcane Research Institute (BSRI) farm at Ishurdi, Pabna, Bangladesh during2008-2009 and 2009-2010to investigate the growth and y...
Production potential of spring sugarcane as influenced by intercropping of dual- purpose legumes under tarai conditions of Uttarakhand
Production potential of spring sugarcane as influenced by intercropping of dual- purpose legumes under tarai conditions of Uttarakhand
A field experiment was conducted during 2000-02 at the Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, to study the effect of dual-purpose legume intercrop...

