Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer

View through CrossRef
Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications. However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling. In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate. By fixing the minimum thickness of the guiding layer at 200 nm, we could observe a slight frequency shift compared to the sample without a guiding layer, with the presence of different types of surface mode waves (Rayleigh and Sezawa). This thin guiding layer could be efficient in transforming the propagation modes, acting as a sensing layer for the binding of biomolecules to the gold layer, and influencing the output signal in terms of frequency or velocity. The proposed GaN/sapphire device integrated with a guiding layer could possibly be used as a biosensor and in wireless telecommunication applications.
Title: Surface Acoustic Wave Propagation of GaN/Sapphire Integrated with a Gold Guiding Layer
Description:
Gallium nitride (GaN), widely known as a wide bandgap semiconductor material, has been mostly employed in high power devices, light emitting diodes (LED), and optoelectronic applications.
However, it could be exploited differently due to its piezoelectric properties, such as its higher SAW velocity and strong electromechanical coupling.
In this study, we investigated the affect of the presence of a guiding layer made from titanium/gold on the surface acoustic wave propagation of the GaN/sapphire substrate.
By fixing the minimum thickness of the guiding layer at 200 nm, we could observe a slight frequency shift compared to the sample without a guiding layer, with the presence of different types of surface mode waves (Rayleigh and Sezawa).
This thin guiding layer could be efficient in transforming the propagation modes, acting as a sensing layer for the binding of biomolecules to the gold layer, and influencing the output signal in terms of frequency or velocity.
The proposed GaN/sapphire device integrated with a guiding layer could possibly be used as a biosensor and in wireless telecommunication applications.

Related Results

Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Highmobility AlGaN/GaN high electronic mobility transistors on GaN homo-substrates
Gallium nitride (GaN) has great potential applications in high-power and high-frequency electrical devices due to its superior physical properties.High dislocation density of GaN g...
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Studies on the Influences of i-GaN, n-GaN, p-GaN and InGaN Cap Layers in AlGaN/GaN High-Electron-Mobility Transistors
Systematic studies were performed on the influence of different cap layers of i-GaN, n-GaN, p-GaN and InGaN on AlGaN/GaN high-electron-mobility transistors (HEMTs) grown on sapphi...
Hurricane Eloise Directional Wave Energy Spectra
Hurricane Eloise Directional Wave Energy Spectra
ABSTRACT Directiona1 wave energy spectra, calculated from data recorded during Hurricane Eloise (Gulf of Mexico, 1975), are presented. The spectra, based on an en...
GaN Growth Using GaN Buffer Layer
GaN Growth Using GaN Buffer Layer
High-quality gallium nitride (GaN) film was obtained for the first time using a GaN buffer layer on a sapphire substrate. An optically flat and smooth surface was obtained over a t...
Investigation of n-type GaN deposited on sapphire substrate with different small misorientations
Investigation of n-type GaN deposited on sapphire substrate with different small misorientations
The ntype GaN films have been grown on cplane sapphire with different small misorientation(0°—03°)by metalorganic chemical vapor deposition. It was observed by atomic force mic...
(Invited) From MRTA to SMRTA: Improvements in Activating Implanted Dopants in GaN
(Invited) From MRTA to SMRTA: Improvements in Activating Implanted Dopants in GaN
GaN and related compounds have received a great deal of attention from the research community due to their tunable direct bandgap, radiation hardness, and a favorable Baliga figure...
Advanced HEMT Characteristics of Epitaxial Quality-improved GaN by Using Patterned Sapphire Substract
Advanced HEMT Characteristics of Epitaxial Quality-improved GaN by Using Patterned Sapphire Substract
INTRODUCTION Accomplishing with the booming market of personal communication services and the fifth generation (5G) mobile systems, the demands for high frequency an...
Wave Force Calculations for Stokes and Non-Stokes Waves
Wave Force Calculations for Stokes and Non-Stokes Waves
ABSTRACT A new wave particle velocity procedure permits calculation of forces from regular wave profiles of more or less arbitrary wave crest to height ratios, as...

Back to Top