Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

Unsupervised Vehicle Re-Identification Based on Cross-Style Semi-Supervised Pre-Training and Feature Cross-Division

View through CrossRef
Vehicle Re-Identification (Re-ID) based on Unsupervised Domain Adaptation (UDA) has shown promising performance. However, two main issues still exist: (1) existing methods that use Generative Adversarial Networks (GANs) for domain gap alleviation combine supervised learning with hard labels of the source domain, resulting in a mismatch between style transfer data and hard labels; (2) pseudo label assignment in the fine-tuning stage is solely determined by similarity measures of global features using clustering algorithms, leading to inevitable label noise in generated pseudo labels. To tackle these issues, this paper proposes an unsupervised vehicle re-identification framework based on cross-style semi-supervised pre-training and feature cross-division. The framework consists of two parts: cross-style semi-supervised pre-training (CSP) and feature cross-division (FCD) for model fine-tuning. The CSP module generates style transfer data containing source domain content and target domain style using a style transfer network, and then pre-trains the model in a semi-supervised manner using both source domain and style transfer data. A pseudo-label reassignment strategy is designed to generate soft labels assigned to the style transfer data. The FCD module obtains feature partitions through a novel interactive division to reduce the dependence of pseudo-labels on global features, and the final similarity measurement combines the results of partition features and global features. Experimental results on the VehicleID and VeRi-776 datasets show that the proposed method outperforms existing unsupervised vehicle re-identification methods. Compared with the last best method on each dataset, the method proposed in this paper improves the mAP by 0.63% and the Rank-1 by 0.73% on the three sub-datasets of VehicleID on average, and it improves mAP by 0.9% and Rank-1 by 1% on VeRi-776 dataset.
Title: Unsupervised Vehicle Re-Identification Based on Cross-Style Semi-Supervised Pre-Training and Feature Cross-Division
Description:
Vehicle Re-Identification (Re-ID) based on Unsupervised Domain Adaptation (UDA) has shown promising performance.
However, two main issues still exist: (1) existing methods that use Generative Adversarial Networks (GANs) for domain gap alleviation combine supervised learning with hard labels of the source domain, resulting in a mismatch between style transfer data and hard labels; (2) pseudo label assignment in the fine-tuning stage is solely determined by similarity measures of global features using clustering algorithms, leading to inevitable label noise in generated pseudo labels.
To tackle these issues, this paper proposes an unsupervised vehicle re-identification framework based on cross-style semi-supervised pre-training and feature cross-division.
The framework consists of two parts: cross-style semi-supervised pre-training (CSP) and feature cross-division (FCD) for model fine-tuning.
The CSP module generates style transfer data containing source domain content and target domain style using a style transfer network, and then pre-trains the model in a semi-supervised manner using both source domain and style transfer data.
A pseudo-label reassignment strategy is designed to generate soft labels assigned to the style transfer data.
The FCD module obtains feature partitions through a novel interactive division to reduce the dependence of pseudo-labels on global features, and the final similarity measurement combines the results of partition features and global features.
Experimental results on the VehicleID and VeRi-776 datasets show that the proposed method outperforms existing unsupervised vehicle re-identification methods.
Compared with the last best method on each dataset, the method proposed in this paper improves the mAP by 0.
63% and the Rank-1 by 0.
73% on the three sub-datasets of VehicleID on average, and it improves mAP by 0.
9% and Rank-1 by 1% on VeRi-776 dataset.

Related Results

On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
On Flores Island, do "ape-men" still exist? https://www.sapiens.org/biology/flores-island-ape-men/
<span style="font-size:11pt"><span style="background:#f9f9f4"><span style="line-height:normal"><span style="font-family:Calibri,sans-serif"><b><spa...
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
Crescimento de feijoeiro sob influência de carvão vegetal e esterco bovino
<p align="justify"><span style="color: #000000;"><span style="font-family: 'Times New Roman', serif;"><span><span lang="pt-BR">É indiscutível a import...
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
Hubungan Perilaku Pola Makan dengan Kejadian Anak Obesitas
<p><em><span style="font-size: 11.0pt; font-family: 'Times New Roman',serif; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-langua...
Even Star Decomposition of Complete Bipartite Graphs
Even Star Decomposition of Complete Bipartite Graphs
<p><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">A decomposition (</span><span><span style="font-family: 宋体; font-size: medi...
The Annual Performance Review As A Positive Source For Employee Motivation?
The Annual Performance Review As A Positive Source For Employee Motivation?
<p class="MsoNormal" style="text-align: justify; margin: 0in 0.5in 0pt; mso-pagination: none;"><span style="color: black; font-size: 10pt; mso-themecolor: text1;"><s...
Profil właścicieli gospodarstw agroturystycznych na Roztoczu
Profil właścicieli gospodarstw agroturystycznych na Roztoczu
<p style="text-indent: 1.25cm; margin-bottom: 0cm; letter-spacing: 0.8pt; line-height: 150%;" align="justify"><span style="color: #4f81bd;"><span style="font-family:...
Modeling and simulation on interaction between pedestrians and a vehicle in a channel
Modeling and simulation on interaction between pedestrians and a vehicle in a channel
The mixed traffic flow composed of pedestrians and vehicles shows distinct features that a single kind of traffic flow does not have. In this paper, the motion of a vehicle is desc...

Back to Top