Search engine for discovering works of Art, research articles, and books related to Art and Culture
ShareThis
Javascript must be enabled to continue!

CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3

View through CrossRef
CO2 methanation was studied over monometallic catalyst, i.e., Ni, Fe and Co; on CeO2-Cr2O3 support. The catalysts were prepared using one-pot hydrolysis of mixed metal nitrates and ammonium carbonate. Physicochemical properties of the pre- and post-exposure catalysts were characterized by X-Ray Powder Diffraction (XRD), Hydrogen Temperature Programmed Reduction (H2-TPR), and Field Emission Scanning Electron Microscope (FE-SEM). The screening of three dopants over CeO2-Cr2O3 for CO2 methanation was conducted in a milli-packed bed reactor. Ni-based catalyst was proven to be the most effective catalyst among all. Thus, a group of NiO/CeO2-Cr2O3 catalysts with Ni loading was investigated further. 40 % NiO/CeO2-Cr2O3 exhibited the highest CO2 conversion of 97.67% and CH4 selectivity of 100% at 290 °C. The catalytic stability of NiO/CeO2-Cr2O3 was tested towards the CO2 methanation reaction over 50 h of time-on-stream experiment, showing a good stability in term of catalytic activity.
Title: CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3
Description:
CO2 methanation was studied over monometallic catalyst, i.
e.
, Ni, Fe and Co; on CeO2-Cr2O3 support.
The catalysts were prepared using one-pot hydrolysis of mixed metal nitrates and ammonium carbonate.
Physicochemical properties of the pre- and post-exposure catalysts were characterized by X-Ray Powder Diffraction (XRD), Hydrogen Temperature Programmed Reduction (H2-TPR), and Field Emission Scanning Electron Microscope (FE-SEM).
The screening of three dopants over CeO2-Cr2O3 for CO2 methanation was conducted in a milli-packed bed reactor.
Ni-based catalyst was proven to be the most effective catalyst among all.
Thus, a group of NiO/CeO2-Cr2O3 catalysts with Ni loading was investigated further.
40 % NiO/CeO2-Cr2O3 exhibited the highest CO2 conversion of 97.
67% and CH4 selectivity of 100% at 290 °C.
The catalytic stability of NiO/CeO2-Cr2O3 was tested towards the CO2 methanation reaction over 50 h of time-on-stream experiment, showing a good stability in term of catalytic activity.

Related Results

Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Rapid Large-scale Trapping of CO2 via Dissolution in US Natural CO2 Reservoirs
Naturally occurring CO2 reservoirs across the USA are critical natural analogues of long-term CO2 storage in the subsurface over geological timescales and provide valuable insights...
The Comprehensive Evaluation on the Integral Development of Volcanic Gas Reserves and CO2 Flooding in Jilin Oil Field
The Comprehensive Evaluation on the Integral Development of Volcanic Gas Reserves and CO2 Flooding in Jilin Oil Field
Abstract Pilot-CO2 flooding in Jilin Oil Field has been got a first base in recent years in order to ensure CO2 coming from the development of volcanic gas reserv...
Surface stability and small-scale testing of zirconia
Surface stability and small-scale testing of zirconia
Tetragonal polycrystalline zirconia stabilized with 3 mol% of yttria (3Y-TZP) is a biocompatible ceramic showing superior mechanical properties, which are partly the consequence of...
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Mechanism and Potential of CO2 Injection to Enhance Recovery Rate of Gas Reservoir
Abstract This paper aims to clarify the mechanism and feasibility of carbon dioxide (CO2) injection into carbonate gas reservoirs to enhance recovery and evaluate it...
Geologic CO2 Storage in Oil Fields: Considerations for Successful Sites
Geologic CO2 Storage in Oil Fields: Considerations for Successful Sites
Abstract Geologic storage of anthropogenic CO2 is being considered and tested in several subsurface settings. Deep brine-bearing formations hold the promise of stori...
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Impact of CCUS Impurities on Dense Phase CO2 Pipeline Surface Engineering Design
Abstract Numerous CO2 injection pipeline applications have been developed and implemented in the past decades in the UAE and all around the globe. Transporting the C...
A Monitoring CO2 Method by the Dual Cross Section Pulsed Neutron Logging Technology in Heavy Oil Reservoirs
A Monitoring CO2 Method by the Dual Cross Section Pulsed Neutron Logging Technology in Heavy Oil Reservoirs
Capturing industrial carbon dioxide (CO2), one of the most common greenhouse gases, and injecting it into deep formations for long-term storage is a promising method. CO2 enhanced ...
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Effectiveness of 4D Seismic Data to Monitor CO2 Plume in Cranfield CO2-EOR Project
Using carbon dioxide for enhance oil recovery (EOR) has attracted a great deal of attention as the world grapples with the twin challenges of improving oil recovery from mature oil...

Back to Top