Javascript must be enabled to continue!
Perbandingan Metode Klasifikasi Naive Bayes dan K-Nearest Neighbor
View through CrossRef
Classification is a technique to build a model and assess an object to put in a particular class. Naive Bayes is one of algorithm in the classification based on the Bayesian theorem, which assumes the independencies of one class with another class. K-nearest neighbor is an algorithm in the classification method for classifiying based on data that has a closest distance between one object and another object. Naive Bayes and k-nearest neighbor methods are used in classification of the employment status of citizen in Kutai Kartanegara regency because has a good accuracy and produce a small error rate when using large data sets. This research aim to compared optimal performance accuracy of both methods on the classifiying of the employment status of citizen. The data used are employment status of citizen in Kutai Kartanegara Regency based on SAKERNAS of East Kalimantan Province in 2018 and used 5 factors namely age, sex, status in the household, marital status, and education to predict employment status of citizen. Based on the analysis, classification the employment status of citizen with naive Bayes method has accuracy of 90,08% and in the k-nearest neighbor has accuracy of 94,66%. To evaluate the accuracy of classification used calculation of Press’s Q. Based on Press’s Q value showed that both of classification methods are accurate. From that analysis, can be concluded that the k-nearest neighbor method works better compared with the naive Bayes method for the case of the employment status of citizen in Kutai Kartanegara Regency.
Title: Perbandingan Metode Klasifikasi Naive Bayes dan K-Nearest Neighbor
Description:
Classification is a technique to build a model and assess an object to put in a particular class.
Naive Bayes is one of algorithm in the classification based on the Bayesian theorem, which assumes the independencies of one class with another class.
K-nearest neighbor is an algorithm in the classification method for classifiying based on data that has a closest distance between one object and another object.
Naive Bayes and k-nearest neighbor methods are used in classification of the employment status of citizen in Kutai Kartanegara regency because has a good accuracy and produce a small error rate when using large data sets.
This research aim to compared optimal performance accuracy of both methods on the classifiying of the employment status of citizen.
The data used are employment status of citizen in Kutai Kartanegara Regency based on SAKERNAS of East Kalimantan Province in 2018 and used 5 factors namely age, sex, status in the household, marital status, and education to predict employment status of citizen.
Based on the analysis, classification the employment status of citizen with naive Bayes method has accuracy of 90,08% and in the k-nearest neighbor has accuracy of 94,66%.
To evaluate the accuracy of classification used calculation of Press’s Q.
Based on Press’s Q value showed that both of classification methods are accurate.
From that analysis, can be concluded that the k-nearest neighbor method works better compared with the naive Bayes method for the case of the employment status of citizen in Kutai Kartanegara Regency.
Related Results
Ekstraksi Informasi Kesehatan Masyarakat Dari Tweet Berbahasa Indonesia Berbasis Klasifikasi Dengan Algoritma Naive Bayes
Ekstraksi Informasi Kesehatan Masyarakat Dari Tweet Berbahasa Indonesia Berbasis Klasifikasi Dengan Algoritma Naive Bayes
AbstrakKesehatan merupakan kebutuhan utama manusia. Di Indonesia terdapat permasalahan tentang kesehatan, yaitu meningkatnya penyakit menular dan penyakit tidak menular. Untuk men...
STUDI KOMPARASI ALGORITMA NAIVE BAYES DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI KELUARGA MISKIN DI DESA NGADIWARNO KECAMATAN SUKOREJO KABUPATEN KENDAL
STUDI KOMPARASI ALGORITMA NAIVE BAYES DAN K-NEAREST NEIGHBOR UNTUK KLASIFIKASI KELUARGA MISKIN DI DESA NGADIWARNO KECAMATAN SUKOREJO KABUPATEN KENDAL
Penelitian ini bertujuan untuk mengevaluasi dan membandingkan kinerja algoritma Naive Bayes dan K-Nearest Neighbor (KNN) dalam mengklasifikasikan keluarga miskin di Desa Ngadiwarno...
PERBANDINGAN ALGORITMA C4.5 DAN NAIVE BAYES DALAM MENDETEKSI HIPERTENSI DI PUSKESMAS BANYUBIRU
PERBANDINGAN ALGORITMA C4.5 DAN NAIVE BAYES DALAM MENDETEKSI HIPERTENSI DI PUSKESMAS BANYUBIRU
Hipertensi menjadi penyebab kematian nomor 1 di dunia setiap tahunnya karena merupakan pintu masuk penyakit lain, seperti : jantung, gagal ginjal, diabetes, dan stroke (Direktur ...
Klasifikasi Sentimen Masyarakat terhadap Presiden Indonesia Menggunakan Metode Naive Bayes
Klasifikasi Sentimen Masyarakat terhadap Presiden Indonesia Menggunakan Metode Naive Bayes
Abstract. Social media platform X has become an important platform for expressing public opinion, particularly in the political context, including the 2024 Presidential Election in...
Comparative Analysis ofK-Nn, Naïve Bayes, and logistic regression for credit card fraud detection
Comparative Analysis ofK-Nn, Naïve Bayes, and logistic regression for credit card fraud detection
Introduction:This paper highlights the outcome of the comparative study of “Various Machine learning algo-rithms namely K-NN, Naive Bayes, and Logistic Regression for Credit Card F...
PENERAPAN ALGORITMA KLASIFIKASI SEBAGAI PENDUKUNG KEPUTUSAN PEMBERIAN BEASISWA MAHASISWA
PENERAPAN ALGORITMA KLASIFIKASI SEBAGAI PENDUKUNG KEPUTUSAN PEMBERIAN BEASISWA MAHASISWA
Beasiswa merupakan bantuan pemerintah maupun swasta berupa sejumlah uang yang diberikan kepada siswa yang sedang atau yang akan mengikuti pendidikan di sekolah...
Klasifikasi Emosi Tokoh Nathan dalam Novel Dear Nathan Karya Erisca Febriani: Kajian Perspektif David Krech
Klasifikasi Emosi Tokoh Nathan dalam Novel Dear Nathan Karya Erisca Febriani: Kajian Perspektif David Krech
Abstrak: Masalah yang diangkat pada penelitian ini adalah bagaimanakah bentuk klasifikasi emosi tokoh Nathan dalam novel Dear Nathan karya Erisca Febriani: kajian perspektif David ...
Klasifikasi Emosi pada Teks Berbahasa Inggris Menggunakan Pendekatan Ensemble Bagging
Klasifikasi Emosi pada Teks Berbahasa Inggris Menggunakan Pendekatan Ensemble Bagging
Penelitian ini menyoroti pentingnya klasifikasi emosi dalam teks berbahasa Inggris, khususnya dalam konteks interaksi manusia di media sosial yang sering melibatkan data tidak ters...

