Javascript must be enabled to continue!
Soil Moisture, Grass Production and Mesquite Resprout Architecture Following Mesquite Above-Ground Mortality
View through CrossRef
Honey mesquite (Prosopis glandulosa) is an invasive native woody plant in the southern Great Plains, USA. Treatments used to slow the invasion rate have either killed the plant (“root-kill”) or killed above-ground tissue (“top-kill”). Top-killing provides temporary suppression, but stimulates multi-stemmed regrowth. This study from north central Texas quantified soil moisture, grass production and mesquite resprout architecture following a mechanical clearing treatment that top-killed mesquite (cleared) compared to untreated mesquite woodland (woodland) over a 10-year period. During an extreme drought at 5 and 6 years post-clearing, soil moisture at 60-cm depth became lower in cleared than in woodland, suggesting that, as early as 5 years after top-kill, water use by regrowth mesquite could be greater than that by woodland mesquite. Perennial grass production was greater in cleared treatments than in woodland treatments in all years except the extreme drought years. Mesquite regrowth biomass increased numerically each year and was independent of annual precipitation with one exception. During the year 5 and 6 drought, mesquite stopped lateral expansion of larger stems and increased growth of smaller stems and twigs. In summary, top-killing mesquite generated short-term benefits of increased grass production, but regrowth created potentially negative consequences related to soil moisture.
Title: Soil Moisture, Grass Production and Mesquite Resprout Architecture Following Mesquite Above-Ground Mortality
Description:
Honey mesquite (Prosopis glandulosa) is an invasive native woody plant in the southern Great Plains, USA.
Treatments used to slow the invasion rate have either killed the plant (“root-kill”) or killed above-ground tissue (“top-kill”).
Top-killing provides temporary suppression, but stimulates multi-stemmed regrowth.
This study from north central Texas quantified soil moisture, grass production and mesquite resprout architecture following a mechanical clearing treatment that top-killed mesquite (cleared) compared to untreated mesquite woodland (woodland) over a 10-year period.
During an extreme drought at 5 and 6 years post-clearing, soil moisture at 60-cm depth became lower in cleared than in woodland, suggesting that, as early as 5 years after top-kill, water use by regrowth mesquite could be greater than that by woodland mesquite.
Perennial grass production was greater in cleared treatments than in woodland treatments in all years except the extreme drought years.
Mesquite regrowth biomass increased numerically each year and was independent of annual precipitation with one exception.
During the year 5 and 6 drought, mesquite stopped lateral expansion of larger stems and increased growth of smaller stems and twigs.
In summary, top-killing mesquite generated short-term benefits of increased grass production, but regrowth created potentially negative consequences related to soil moisture.
Related Results
Large-scale Soil Moisture Monitoring: A New Approach
Large-scale Soil Moisture Monitoring: A New Approach
Soil moisture is a critical factor for understanding the interactions and feedback between the atmosphere and Earth's surface, particularly through energy and water cycles. It also...
Soil Moisture Retrieval Over Agricultural Fields Using Synthetic Aperture Radar (SAR) Data
Soil Moisture Retrieval Over Agricultural Fields Using Synthetic Aperture Radar (SAR) Data
Soil moisture is vital for agricultural fields as it determines water availability for crops, directly affecting plant growth and productivity. It regulates nutrient uptake, root d...
Estimating top-soil moisture at high spatiotemporal resolution in a highly complex landscape
Estimating top-soil moisture at high spatiotemporal resolution in a highly complex landscape
Soil moisture is a critical variable in precision agriculture, hydrological modeling, and environmental monitoring, influencing crop productivity, irrigation planning, hydrological...
Parameterization of soil evaporation and coupled transport of moisture and heat for arid and semiarid regions
Parameterization of soil evaporation and coupled transport of moisture and heat for arid and semiarid regions
Soil moisture is an important parameter in numerical weather forecasting and climate projection studies, and it is extremely important for arid and semiarid areas. Different from t...
Influence of selected grass mulches on soil physical properties under sprinkler irrigation system
Influence of selected grass mulches on soil physical properties under sprinkler irrigation system
Mulching is a vital agricultural practice that affects soil moisture retention, temperature regulation, and overall soil health. Three grass mulching materials (Gamba (Andropogon G...
Project SoMMet - Metrology for multi-scale monitoring of soil moisture
Project SoMMet - Metrology for multi-scale monitoring of soil moisture
Soil moisture is one of the Essential Climate Variables as defined by the WMO Global Climate Observing System. Several soil moisture observation systems exist on multiple scales, h...
Using multiple hydrological data sources to reduce uncertainty in soil drainage modeling
Using multiple hydrological data sources to reduce uncertainty in soil drainage modeling
<p>Soil drainage flux is crucial for determining agrochemical loading and groundwater recharge. Because soil drainage is difficult to measure, it is typically predict...
Drought alters plant‐soil feedback effects on biomass allocation but not on plant performance
Drought alters plant‐soil feedback effects on biomass allocation but not on plant performance
AbstractAimsDrought events can alter the composition of plant and soil communities, and are becoming increasingly common and severe due to climate change. However, how droughts aff...

