Javascript must be enabled to continue!
Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Experimental Analysis
View through CrossRef
Miniaturization and utilization of low-dimensional structures of recent electronic devices have witnessed some new micro cooling methods which can fulfil the cooling demand for the electronic devices. Microchannel heat sink (MCHS) is one of the micro cooling method which appears as a promising method that can provide high heat transfer rate due to small hydraulic diameter. Furthermore, microchannel heat sink is easy to be fabricated compare to other micro cooling device. Due to fast development in electronic industry, hybrid microchannel heat sink with optimal design has received a great deal of attention in order to provide sustainable cooling solutions. However, most of the studies of hybrid microchannel heat sink only provided the numerical analysis without any validation of the proposed design experimentally. This is very important since it also will determine whether the proposed hybrid microchannel heat sink can be fabricated or not. Therefore, the aim of this article is to validate the numerical model of hybrid microchannel heat sink (TC-RR-SC MCHS) experimentally. The validation result showed that the maximum discrepancy between both simulation and experimental analyses for Nusselt number and friction factor were 15.8% and 17.4%, respectively, which is less than 20%.
Title: Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Experimental Analysis
Description:
Miniaturization and utilization of low-dimensional structures of recent electronic devices have witnessed some new micro cooling methods which can fulfil the cooling demand for the electronic devices.
Microchannel heat sink (MCHS) is one of the micro cooling method which appears as a promising method that can provide high heat transfer rate due to small hydraulic diameter.
Furthermore, microchannel heat sink is easy to be fabricated compare to other micro cooling device.
Due to fast development in electronic industry, hybrid microchannel heat sink with optimal design has received a great deal of attention in order to provide sustainable cooling solutions.
However, most of the studies of hybrid microchannel heat sink only provided the numerical analysis without any validation of the proposed design experimentally.
This is very important since it also will determine whether the proposed hybrid microchannel heat sink can be fabricated or not.
Therefore, the aim of this article is to validate the numerical model of hybrid microchannel heat sink (TC-RR-SC MCHS) experimentally.
The validation result showed that the maximum discrepancy between both simulation and experimental analyses for Nusselt number and friction factor were 15.
8% and 17.
4%, respectively, which is less than 20%.
Related Results
Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Numerical Model Validation
Hybrid Microchannel Heat Sink with Sustainable Cooling Solutions: Numerical Model Validation
Miniaturization and utilization of low-dimensional structures of recent electronic devices have witnessed some new micro cooling methods which can fulfil the cooling demand for the...
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
Numerical Evaluation of Clearance Requirements Around Obstructions in Finned Heat Sinks
This study uses CFD to consider the effects of obstructions (bosses) on the fluid flow and heat transfer in finned heat sinks used for cooling electronic components. In particular,...
Thermal–Hydrodynamic Behavior and Design of a Microchannel Pin-Fin Hybrid Heat Sink
Thermal–Hydrodynamic Behavior and Design of a Microchannel Pin-Fin Hybrid Heat Sink
A three-dimensional convective heat transfer model of a microchannel pin-fin hybrid heat sink was established. Considering the non-uniform heat generation of 3D stacked chips, the ...
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
Numerical Investigation of Heat Transfer Characteristics of a Novel Wavy-Tapered Microchannel Heat Sink
In the present study, a multi-variable comparative study of the effect of microchannel heat sink configurations on their thermal performance is conducted by numerically simulating ...
Performance Evaluation of Concentrated Photovoltaic System Using a Microchannel Heat Sink
Performance Evaluation of Concentrated Photovoltaic System Using a Microchannel Heat Sink
The high incident heat flux on the concentrated photovoltaic (CPV) system causes a significant increase in the cell temperature and thus reduces the system efficiency. Therefore, u...
Transient Analysis of the Loss of Heat Sink Accident in a New Type of Megawatt Heat Pipe Reactor
Transient Analysis of the Loss of Heat Sink Accident in a New Type of Megawatt Heat Pipe Reactor
Abstract
Heat pipe reactors are one of the ideal reactor types for Unmanned Underwater Vehicles (UUVs) due to high energy density, long lifecycle, modularity, and co...
Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of Novel Microchannel Heat Sink
Numerical Analysis of Fluid Flow and Heat Transfer Characteristics of Novel Microchannel Heat Sink
Microchannel heat sinks have gained prominence in the field of thermal management, offering compact and efficient solutions for dissipating heat flux from high performance electron...
Numerical Investigation of Heat Transfer Enhancement in a Microchannel With Grooved Surfaces
Numerical Investigation of Heat Transfer Enhancement in a Microchannel With Grooved Surfaces
This paper presents a numerical investigation for two types of grooves (rectangular and arc shapes) fabricated in the microchannel surfaces, which leads to enhancement in single-ph...


