Javascript must be enabled to continue!
Influence of surface treatments and addition of a reactive agent on the properties of PLA/flax and PLA/bamboo composites
View through CrossRef
Polylactic acid (PLA) composites reinforced with 10 wt% of flax (FF) or bamboo (BF) fibers were prepared via an internal mixer and/or twin-screw extrusion. Alkali pretreated fibers were soaked in silane to improve adhesion between fibers and matrix. 0.8 wt% of Joncryl™, a grafted copolymer acting as PLA chain extender, was also used alone or in combination with silane treatment of fibers to improve interfacial adhesion. The influence of silane treatment and/or Joncryl on the composite materials on mechanical, thermal and thermomechanical properties of materials processed through injection molding was investigated. Improved adhesion of the fibers to the matrix was shown using a scanning electron microscope. Fourier Transform Infrared Spectroscopy indicated that chemical bonds were formed between the silane coupling agent and fibers. X-ray Photo-electron Spectroscopy confirmed that fibers and silane derivatives were effectively coupled. XPS also highlighted that silane coupling agent reacted in higher amounts on bamboo than flax fibers, probably due to a higher amount of lignin in the case of bamboo fibers. Thermogravimetric analyses indicated that silane-treated flax and bamboo increased the thermal stability of the corresponding composites (PLA-SFF and PLA-SFB) compared to non-treated fiber composites. The incorporation of Joncryl alone entailed a degradation of the thermal stability of the corresponding composites (PLAJ-FF and PLAJ-FB) but enhanced the PLA/fibers interfacial adhesion. The combination of Joncryl and silane treatment resulted in strong improvements of thermal stability and interfacial adhesion for the PLAJ-SFF and PLAJ-SBF composites. Increase in tensile moduli and decrease in tensile strengths with the incorporation of the pristine fibers were noted. For silane-treated fibers, the tensile modulus and the strength of the corresponding composites were improved when adding Joncryl alone or in combination with silane. From also rheological and molar weight measurements, it could be concluded that Joncryl acts both as PLA chain extender and coupling agent.
Title: Influence of surface treatments and addition of a reactive agent on the properties of PLA/flax and PLA/bamboo composites
Description:
Polylactic acid (PLA) composites reinforced with 10 wt% of flax (FF) or bamboo (BF) fibers were prepared via an internal mixer and/or twin-screw extrusion.
Alkali pretreated fibers were soaked in silane to improve adhesion between fibers and matrix.
0.
8 wt% of Joncryl™, a grafted copolymer acting as PLA chain extender, was also used alone or in combination with silane treatment of fibers to improve interfacial adhesion.
The influence of silane treatment and/or Joncryl on the composite materials on mechanical, thermal and thermomechanical properties of materials processed through injection molding was investigated.
Improved adhesion of the fibers to the matrix was shown using a scanning electron microscope.
Fourier Transform Infrared Spectroscopy indicated that chemical bonds were formed between the silane coupling agent and fibers.
X-ray Photo-electron Spectroscopy confirmed that fibers and silane derivatives were effectively coupled.
XPS also highlighted that silane coupling agent reacted in higher amounts on bamboo than flax fibers, probably due to a higher amount of lignin in the case of bamboo fibers.
Thermogravimetric analyses indicated that silane-treated flax and bamboo increased the thermal stability of the corresponding composites (PLA-SFF and PLA-SFB) compared to non-treated fiber composites.
The incorporation of Joncryl alone entailed a degradation of the thermal stability of the corresponding composites (PLAJ-FF and PLAJ-FB) but enhanced the PLA/fibers interfacial adhesion.
The combination of Joncryl and silane treatment resulted in strong improvements of thermal stability and interfacial adhesion for the PLAJ-SFF and PLAJ-SBF composites.
Increase in tensile moduli and decrease in tensile strengths with the incorporation of the pristine fibers were noted.
For silane-treated fibers, the tensile modulus and the strength of the corresponding composites were improved when adding Joncryl alone or in combination with silane.
From also rheological and molar weight measurements, it could be concluded that Joncryl acts both as PLA chain extender and coupling agent.
Related Results
The effects of cellulose nanocrystal and dicumyl peroxide on the crystallization kinetics of polylactic acid
The effects of cellulose nanocrystal and dicumyl peroxide on the crystallization kinetics of polylactic acid
AbstractCellulose nanocrystals (CNCs) have been blended into polylactic acid (PLA) to improve the polymer's properties. The dispersion of CNC in the matrix has a strong influence o...
Crystallization Behavior of Vetiver Grass Fiber-Polylactic Acid Composite
Crystallization Behavior of Vetiver Grass Fiber-Polylactic Acid Composite
this work, vetiver fiber was used as a filler for poly (lactic acid) (PLA). The thermal properties of neat PLA and vetiver fiber-PLA composites were investigated. Talc as a nucleat...
Constructing Symmetric Bamboo Domes and Bamboo Spheres. The Shape of Fullerenes C60 and C80 as a Template For Domes
Constructing Symmetric Bamboo Domes and Bamboo Spheres. The Shape of Fullerenes C60 and C80 as a Template For Domes
Since more than 20 years I have built many bamboo domes and bamboo spheres of vari- ous sizes in countries like Switzerland, Germany, Japan, Singapore, and the USA. As I have never...
Recent Situation and Control of Bamboo Diseases in China
Recent Situation and Control of Bamboo Diseases in China
The bamboo diseases occur in a rather common and acute way in China due to a marked deterioration of ecological environment of bamboo stands which have been caused partially by hum...
Fatigue Life Prediction of Flax-Epoxy Composite Using Supervised Learning Techniques
Fatigue Life Prediction of Flax-Epoxy Composite Using Supervised Learning Techniques
<p dir="ltr">Composite materials have gained significant attention in engineering applications due to their lightweight, high strength, and durability properties. This projec...
Fatigue Life Prediction of Flax-Epoxy Composite Using Supervised Learning Techniques
Fatigue Life Prediction of Flax-Epoxy Composite Using Supervised Learning Techniques
<p dir="ltr">Composite materials have gained significant attention in engineering applications due to their lightweight, high strength, and durability properties. This projec...
KNOCK DOWN BAMBOO WALL PANEL
KNOCK DOWN BAMBOO WALL PANEL
Abstract- Indonesia often experiences natural disasters, therefore a transitional residential building is needed for victims who are able to build quickly and easily in mobilizatio...
Nghiên cứu chế tạo vật liệu Composite trên cơ sở PLA/Talc định hướng ứng dụng trong công nghệ in 3D
Nghiên cứu chế tạo vật liệu Composite trên cơ sở PLA/Talc định hướng ứng dụng trong công nghệ in 3D
Nghiên cứu này nhằm chế tạo vật liệu composite phân hủy sinh học trên cơ sở Polylactic acid và bột Talc, tiếp đó đánh giá sự tác động của chất trợ tương hợp PLA-g-MAH (MAH) đến tí...

